The de Declaration	(An Autonomous Institution affiliated to VTU, Belagavi) Seventh Semester, B.E Electrical and Electronics Engineering		
,	xamination; Dec - 2017/Jan - 2018		
	AC-DC Drives		
	Max. Marks: 100		

UNIT - I

	UNIT - II		
	iii) Motor speed for $\alpha = 160^{\circ}$ and rated torque.		
	ii) Firing angle for rated motor torque and -500 rpm		
	i) Firing angle for rated motor torque and 750 rpm		
	220 V, 50 Hz. Assuming continuous conduction, calculate;	10	
	$0.06~\Omega$. It is fed from a single phase fully controlled rectifier with an AC source voltage of		
b.	A 200 V, 875 rpm, 150 A separately excited DC motor has an armature resistance of		
	from single phase half controlled rectifier. Assume continuous conduction mode.		
2 a.	With a neat circuit diagram and waveforms, explain the working of DC series motor fed	l 10	
	for each quadrant operation.	10	
b.	Explain the four quadrant operation of DC motor drive. State the conditions to be satisfied	10	
	them briefly.	10	
1 a.	. With a neat block diagram, state the essential parts of an electric drive system. Explain		

- 3 a. Explain the operation of three phases fully controlled rectifier control of DC separately excited motor.
- b. A 220 V, 1500 rpm, 50 A separately excited DC motor with armature resistance of 0.5 Ω is fed from a three phase fully controlled rectifier. Available AC source has a line voltage of 440 V, 50 Hz. A star-delta connected transformer is used to feed the armature. So that motor terminal voltage equals rated voltage when converter firing angle is zero.
 - I) Calculate transformer turns ratio
 - II) Determine the value of living angle :
 - i) Motor is running at 1200 rpm and rated torque
 - ii) When motor is running at -800 rpm and twice the rated torque.
- 4 a. Explain with a circuit diagram and waveforms, the regenerative braking of a separately excited DC motor by using Chopper.

10

10

Page No... 1

	1	•			
	i) Average voltage across chop	oper ii) Power	regenerated to the dc supply		
	iii) Minimum possible braking	g speed iv) Maxi	mum possible braking speed		
	v) Motor speed.				
		UNIT - III			
5 a.	Derive an expression for closed loop control of a separately excited DC motor for change in				
	voltage.				
b.	With the help of block diagram, explain the open loop control operation of a DC drives.				
6 a.	What meant by phase locked loop? With the help of block diagram, explain the concept of				
	PLL.				
b.	With the help of block diagram, explain the closed loop control operation of DC drives				
	using microcontroller.				
	UNIT - IV				
7 a.	Discuss on brief the speed control by frequency control and v/f control methods.				
b.	Explain in brief the plugging and regenerative braking of an induction motor.				
8 a.	A three phase, 460 V, 60 Hz, 4 pole Y connected induction motor has the following				
	parameters :				
	R_s = 1.01 $\Omega,$ R'_r = 0.69 $\Omega,$ X_s = 1.3 $\Omega,$ X'_r = 1.94 Ω and X_m = 43.5 $\Omega.$ The no-load loss is				
	negligible. The load torque is proportional to the speed squared, is 41 N-m at 1740 rpm. If				
	the motor speed is 1550 rpm. Determine;				
	i) Load torque	ii) Rotor current	iii) Stator supply voltage		
	iv) Motor input current	v) Motor input power.			
b.	With necessary circuit and speed torque curves, explain the operation of static scherbius				
	drive.				
	UNIT - V				
9 a.	With a neat circuit, explain the working of self controlled synchronous motor drive				
	employing load commutated thyristor inverter.				
b.	Explain the operation of a synchronous motor when fed from a fixed frequency supply.				
10 a.	With a neat sketch, explain paper mill drive system.				
b.	With the help of block diagram, explain the various stages of operation involved in cement				
	mills.				
		* * *			

A DC-DC converter is used on regenerative braking of a DC series motor. The DC supply

voltage is 600 V. The armature resistance is R_a = 0.02 Ω and the field resistance is

 $R_{\rm f}$ = 0.03 $\Omega.$ The back emf constant is K_v = 15.27 mV/A rad/s. The armature current is

P13EE73

b.