U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Seventh Semester, B.E. – Electrical and Electronics Engineering Semester End Examination; Dec - 2017 / Jan - 2018 Design of Analog Control System

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Define the following types of compensation:
 - i) Cascade Compensation
- ii) State Feedback compensation

10

- iii) Series Feedback compensation
- iv) Feed forward Compensation.
- b. Mention the effects of P, PI, PD and PID controller on the system performance.

10

20

- 2. Design a PD controller so that a unity feedback system with open loop transfers function.
 - $G(S) = \frac{20}{S(S+2)(S+4)}$ will have a damping ratio of 0.8 and natural frequency of oscillation

of 2 rad/sec. Draw the corresponding plots for both the cases (Root loci).

UNIT-II

- 3. Design a PI controller for a unity feedback system with open loop transfer function of $G(S) = \frac{4}{(S+1)(S+2)}$ will have phase margin of 50° and natural frequency of oscillation of
- 20

20

- 1.7rad/sec. Discuss the effects. Draw Bode diagram for both the cases (with and without controllers).
- 4. Design a PID controller for a unity feedback system with open loop transfer function
 - $G(S) = \frac{100}{(S+1)(S+2)(S+10)}$ so that the phase margin of system is 45° at a frequency of

4 rad/sec and the steady state error for unit ramp input is 0.1.

UNIT - III

- 5. Design a lead compensator for a unity feedback system with open loop transfer function $G(S) = \frac{K}{S(S+1)(S+5)}$ to satisfy the following specifications:
- 20

- i) Velocity error constant K_V≥50
- ii) Phase margin is ≥20°. Draw Bode diagram only for uncompensated system. Also determine the open loop TF of compensated system.
- 6 a. Discuss the effects of Phase lead compensation.

10 10

b. Explain the design procedure of phase lag control using the Bode plot.

P13EE761

UNIT - IV

- 7 a. Explain the control system design via pole placement technique by state feedback and determine the state feedback gain matrix K by any one method.
- 10
- b. For the system with $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ -1 & -5 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ Determine State feedback gain matrix K with
- 10

u = -Kx so that the closed loop poles are placed at $S = -1 \pm j2$, S = -10.

8 a. Explain the design of type-I Servo system. When the plant has an integrator.

10

10

b. Design a type-I servo system for a plant having the transfer function with an integrator

$$\frac{Y(S)}{U(S)} = \frac{1}{S(S+1)(S+2)}$$
. The Desired closed loop poles are $S = -2 \pm j3.4$ and $S = -10$.

Obtain the unit step response of the designed system.

UNIT - V

- 9 a. Define the following:
 - i) State observer

ii) Full order state observer

10

- iii) Reduced order state observer
- iv) Minimum order state observer.
- b. Design a full order state observer if the desired eigen values of the observer matrix are

$$-2 \pm j2\sqrt{3}$$
 and -5 where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$.

10 a. Write a short note on Quadratic Optimal Regulator systems with Riccatti equation.

10

- b. Determine the optimal feedback gain matrix K for the performance index J for $A = \begin{bmatrix} 0 & 1 \\ 0 & -1 \end{bmatrix}$,
 - $B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ and $Q = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $R = \begin{bmatrix} 1 \end{bmatrix}$ Using Riccatti equation in the design of Optimal control system.

* * *