Page No... 1 P13IP52

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

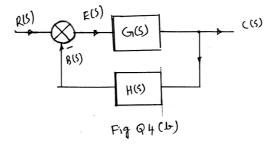
(An Autonomous Institution affiliated to VTU, Belagavi)

Fifth Semester, B.E. - Industrial and Production Engineering Semester End Examination; Dec - 2017/Jan - 2018 **Control Engineering and Machine Tool Technology**

Time: 3 hrs Max. Marks: 100

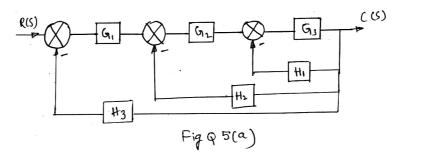
Note: i) Answer *FIVE* full questions, selecting *ONE* full question from each unit.

ii) Assume suitably missing data if any.


UNIT - I

- 1 a. With a neat sketch, explain any two open loop system.
 - b. Derive a differential equation for DC motor with field controlled and obtain transfer function. 12
- 2 a. Differentiate between open loop and closed loop system.
- b. Explain the various requirements of an ideal control system.

UNIT - II


- 3 a. Explain the following:
 - i) Step unit ii) Ramp input
- iii) Parabolic input.
- b. Define steady state response and steady state errors. 8
- 4 a. Determine the effect of steady state error reference in;
 - - i) Step Input
- ii) Ramp Input
- iii) Parabolic Input.

b. Derive steady state error for closed loop system using negative feedback loop as shown in Fig. Q 4(b).

UNIT - III

Reduce the block diagram shown in Fig. Q 5(a) to its canonical form and obtain $\frac{C(S)}{R(S)}$.

b. Explain the block diagram reduction rules for shifting the summing point behind the block.

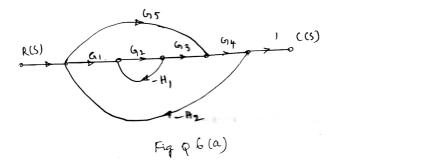
5

15

8

10

10

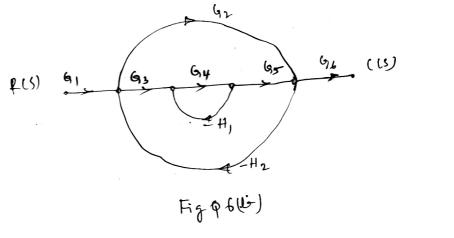

12

15

5

P13IP52 Page No... 2

6 a. Find the overall T.F by using Mason's gain formula for the signal flow graph shown in Fig. Q. 6(a).


10

10

iii) Gear Layout

20

b. Find $\frac{C(S)}{R(S)}$ using Mason's gain formula for the signal flow graph shown in Fig. Q. 6(b).

	UNIT	- IV						
7 a.	a. Explain essential characteristics of Machine tool.							
b.	b. Explain the methods of production of surfaces in metal cutting.							
c.	c. Enumerate the objective of Machine tool.							
8 a.	3 a. Explain any two cutting motion in Machine tool.							
b.	b. With a neat sketch, explain the control system of Machine tools.							
	UNIT - V							
9 a.	a. With a neat sketch explain PIV drive.							
b.	b. Draw a speed distribution for 9 speed gear box with minimum speed 200 rpm and maximum							
	speed 1300 rpm. Determine;							
	i) Number of Spindle Speed ii) Sp	eed Distribution	10					
	iii) Gear layout iv) N	umber of teeth on each gear.	12					
10.	10. Design a gear box incorporating Ruppert drive with clutch arrangement with minimum speed							
of 250 rpm and maximum speed of 1400 rpm with 12 speed (1×3×4) using geometric								
	progression. Determine;							

i) Spindle Speed

iv) Number of teeth on each gear

ii) Speed Distribution

v) Torque transmitted on shaft.