

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Automobile Engineering
Semester End Examination; Dec - 2017/Jan - 2018
Thermo Dynamics

Time: 3 hrs Max. Marks: 100

	Note: Answer FIVE full questions, selecting ONE full question from each unit.							
	UNIT - I							
1	a.	Define the following with examples:						
		i) Property	ii) Cycle	iii) Path function				
		iv) Quasi static process	v) Thermodynamics equilibrium	vi) Macroscopic approach.				
	b.	Consider an alcohol and a mercury thermometer that read exactly 0°C at the ice point and						
		100°C at the stem point. The distance between the two points is divided into 100 equal parts						
		in both thermometers. Do you think these thermometers will give exactly the same reading at						
		a temperature of, say 60°C? Explain.						
	c.	Humans are most comfortable when the temperature is between 65°F and 75°F. Express these						
		temperature limits in °C.	Convert the size of this temperature	e range (10°F) to K, °C, and R.				
2	a.	Distinguish between heat	and work in the thermodynamics.					
	b.	Derive the expression for	the polytropic work in a closed sys	stem.				
	c.	. In an air expression for the compressed air has an internal energy 450 kJ/kg at the beginning						
		of the expansion and an internal energy is 120 kJ/kg, calculate the heat flow to and from the						
		cylinder.						
			UNIT - II					
3	a.	State and explain the Fir	est law of the thermodynamics. Give	re its equation with reference to a				
		cyclic and non-cyclic process.						
	b.	1.5 kg of liquid is stirred in a conducting chamber. During the process 1.7 kJ of heat are						
		transferred from the liquid to the surroundings, while the temperature of the liquid is rising to						
		15°C Find ΔE and W for the process.						
	c.	Air flows steadily at the	rate of 0.4 kg/s through an air con	npressor, entering at 6 m/s with a				
		pressure of 1 bar and a sp	pecific volume of 0.85 m ³ /kg, and 1	leaving at 4.5 m/s with a pressure				
		of 6.9 bar and a specific	volume of 0.16 m ³ /kg. The specific	c internal energy of the air leaving				
		1s 88 kJ/kg greater than that of the air entering. Cooling water in a jacket surrounding the						
		cylinder absorbs heat from the air at the rate of 59 kW. Calculate the power required to drive						
		the compressor and the in	nlet and outlet pipe cross sectional a	reas.				
4	a.	What is a perpetual motion	on machine of first kind? Why is it	impossible?				

b.	Apply steady flow energy equation to each of the following:					
	i) Boiler ii) Nozzle iii) Centrifugal pump iv) Heat Exchanger.	8				
c.	A blower handles 1 kg/s of air at 20°C and consumes a power of 15 kW. The inlet and outlet					
	velocities of air are 100 m/s and 150 m/s respectively. Find the exit air temperature, assuming	8				
	adiabatic conditions. Take Cp of air is 1.005 kJ/kg-K.					
	UNIT - III					
5 a.	What is thermal energy reservoir? Explain source and sink.	4				
b.	Define reversible engine. Show that of all the reversible heat engines working between any					
	two constant but different thermal reservoir temperature, the reversible reversed heat engine	6				
	will have the maximum COP.					
c.	A reversible heat engine operates between two reservoirs at 827°C and 27°C. Engine drives a					
	Carnot refrigerator maintaining -13°C and rejecting heat to reservoir at 27°C. Heat input to					
	the engine is 2000 kJ and the net work available is 300 kJ. How much heat is transferred to					
	refrigerant and total heat rejected to reservoir at 27°C?					
6 a.	Define Kelvin-Plant statement and Clausius statement of 2 nd Law of thermodynamics and					
	shown that they are equivalent.	10				
b.	Two reversible heat engines A and B are arranged in series, A rejecting heat directly to B.					
	Engine a cold sink at a temperature of 4.4°C, if the work output A is twice that of B, find;					
	i) The intermediate temperature between A and B ii) The efficiency of each engine	10				
	iii) The heat rejected to the cold sink.					
	UNIT - IV					
7 a.	With the help of P-V and T-S diagram, derive an expression for the standard efficiency of a					
	semi-diesel cycle.	10				
b.	An Otto cycle operates between maximum and minimum pressure of 600 kPa and 100 kPa.					
	The minimum and maximum temperatures in the cycle are 27°C and 1600 K. Determine	10				
	thermal efficiency of cycle and also show it on T-S and P-V diagram.					
8 a.	What are the draw backs of a single stage compressor for producing high pressure? How are	4				
	these overcome by multistage compression?	4				
b.	Derive an expression to determine the volumetric efficiency of a reciprocating compressor,					
	considering the ambient and the inlet conditions of the compressors are same.	6				
c.	A reciprocating compressor of single stage and double acting type is running at 200 rpm with					
	mechanical efficiency of 85%. Air flows into compressor at the rate of 5 m ³ /min measured at					
	atmospheric condition of 1.02 bar, 27°C. The compressed air is leaving at 8 bar following					
	polytropic process with index of 1.3. Compressor has clearance volume of 5% of stroke	10				
	volume. The temperature rises by 10°C during suction of air from atmosphere into					
	compressor. There occurs pressure loss of 0.03 bar during suction and pressure loss of					
	0.05 bar during discharge passage through valves.					

Contd...3

Determine the dimensions of cylinder, volumetric efficiency and power input required to drive the compressor if stroke to bore ratio is 1.5.

UNIT - V

9 a.	With neat sketches explain the working of vapour absorption refrigeration system.					
b.	What do you mean by refrigerant, refrigeration and refrigerator?					
c.	. A refrigerator working on simple vapour compression cycle operates between the temperature					
	of 25°C and -15°C with NH3, refrigerant. Ammonia is found to be dry after compression and no under cooling of liquid refrigerant occurs in cycle. Calculate;					
	i) Refrigerating effect ii) Mass flow rate per ton of refrigeration iii) COP					
	iv) Power per TR v) Represent on pH and TS diagram.					
10 a.	Define: i) Relative humidity ii) Specific humidity	10				
	iii) Dew point temperature iv) Enthalpy of humid air v) Degree of saturation.	10				

b. For the atmospheric air at room temperature of 30°C and relative humidity of 60% determine partial pressure of air, humidity ratio, dew point temperature, density and enthalpy of air.

10

* * *