U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec - 2017/Jan - 2018 Digital Logic Design

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a.	Realize the function $y = AB + \overline{C}$ using only (i) NAND gates and (ii) NOR gates.	8				
b.	Simplify the following function using Quine-McClusky method:					
	$(A B C D) = \Sigma m(4, 8, 10, 11, 12, 15) + d(9, 14).$					
2 a.	Design a minimal hardware combinational circuit with 4 inputs A, B, C and D and 1 output					
	Z, such that $Z = 1$ if numbers of 1's in the input is more than numbers of 0's, $Z = 0$ if					
	numbers of 1's in input is less than numbers of 0's, Z = don't care when numbers of 1's is					
	equal to numbers of 0's.					
b.	State and prove the following theorems with example:	10				
	i) Duality Theorem ii) Demorgon's Theorem.	10				
c.	Mention any two differences between positive logic and negative logic.	2				
	UNIT - II					
3 a.	a. Design and implement 2-bit magnitude comparator.					
b.	b. Implement full adder using 4 x 1 MUX.					
c.	c. Implement the following functions using 3 x 8 decoder:					
	$F_1(A,B,C) = \Sigma m(0,2,3,5), \ F_2(A,B,C) = \Sigma m(1,2,4,7) \ \ \text{and} \ F_3(A,B,C) = \Sigma m(1,3,6,7).$					
4 a.	a. Design and implement 4-bit carry look ahead adder.					
b.	Write a note on parity checker and parity generator circuit with example.	10				
	UNIT - III					
5 a.	Implement the following functions using PLA:	6				
	$F_1(A,B,C) = \Sigma m(0,2,4,6), \ \ F_2(A,B,C) = \Sigma m(1,3,5,7) \ \ \text{and} \ \ F_3(A,B,C) = \Sigma m(0,1,2,3).$	U				
b.	Give characteristic equations, state diagram and excitation table for :					
	(i) SR-flip flop (ii) JK-flip flop (iii) D-flip flop (iv) T-flip flop.	12				
c.	How do you convert JK-flip flop to T-flip flop?	2				
6 a.	Explain Edge triggered SR-Flip flop.	5				
b.	Explain Master-slave JK-flip flop.					
c.	Convert SR Flip- flop to JK-Flip flop.					

UNIT - IV

7 a.	Design a synchronous counter using JK-flip flops to count the sequence: 0-2-4-6-0.	10		
b.	Explain parallel in serial out shift register with circuit diagram, truth table and waveform.	10		
8 a.	Briefly explain the design of Ring counter and Johnson counters using shift register.	10		
b.	Design mod-6 synchronous counter using T-flip flop.	10		
	UNIT - V			
9 a.	Explain Dual-slope A/D conversion.	10		
b. V	Write Verilog/ VHDL code to implement:			
	(i) 8 x 1 MUX (ii) 3:8 decoder.	10		
10 a.	Explain Binary ladder.	5		
b.	Write VHDL code to implement:			
	(i) 3 bit up counter and down counter	15		
	(ii) Johnson Counter	13		
	(iii) Ring Counter			

* * *