

Time: 3 hrs

Max. Marks: 100

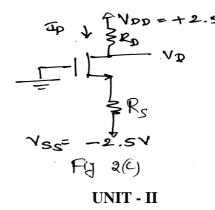
6

6

8

6

8


6

Note: Answer **FIVE** full questions, selecting **ONE** full question from each unit. **UNIT - I**

- 1 a. With a neat diagram, explain the structure of *n*-channel enhancement type MOSFET.
 - b. Design the circuit shown in Fig. 1(b) to obtain a drain current of 80 μ A. Find the value required for R, and find the DC voltage V_D, let the NMOS transistor have V_t = 0.6 V, $\mu_n C_{Ox} = 200 \,\mu A/V^2$, L = 0.8 μ m and w = 4 μ m. (Assume $\lambda = 0$).

JD J JR VD JR VD Fj (b)

- c. Explain the working of MOSFET as an amplifier with the help of a neat diagram and the transfer characteristics.
- 2 a. With relevant diagram, explain biasing by fixing V_{GS} .
- b. With the help of equivalent circuit and the simplified circuit, explain common source amplifier.
- c. Design the circuit shown in Fig. 2(c) so that the transistor operates at $I_D = 0.4$ mA and $V_D = +0.5$ V. The NMOS transistor has $V_t = 0.7$ V, $\mu_n C_{ox} = 100 \ \mu A/V^2$, L = 1 μ m and w = 32 μ m. Neglect channel-length modulation effect ($\lambda = 0$).

3 a. Define :

i) Input offset current ii) Slew rate iii) Input offset voltage.

b. Design a non-inverting amplifier to have a voltage gain of 66 for input amplitude of 15 mV by using Op-Amp741. (Assume $I_{Bmax} = 500$ nA).

6

6

P15EC32

Page No... 2

c.	Explain the operation of a difference amplifier with neat diagram and derive the equation for output voltage.	8
4 a.	With a net diagram, explain the use of single polarity supply for capacitor-coupled voltage	6
	follower.	0
b.	Design a capacitor-coupled voltage follower using a 741 operational amplifier. The lower	
	cut-off frequency for the circuit is to be 50 Hz and the load resistance R_L = 3.9 k $\Omega.$	6
	[Assume $I_{Bmax} = 500 \text{ nA}$].	
c.	With neat diagram, illustrate how high input impedance capacitor coupled voltage follower can be designed?	8
	UNIT - III	
5 a.	With neat diagram, explain the phase lag compensation.	6
b.	List precautions that should be observe for Op-Amp circuit stability. Explain in each case.	8
c.	With the help of waveforms, explain the effect of slew rate on bandwidth and output amplitude.	6
6 a.	With neat diagram, explain the working of non-inverting zero crossing detector.	6
b.	With neat diagram, explain the working of integrating circuit.	6
c.	Design a differenting circuit to give an output of 5 V, when the input changes by 1 V in a time of 100 µs. Use the Op-Amp with a bipolar input voltage. Draw the circuit diagram.	8
	UNIT - IV	
7 9	Explain the working of saturating precision half wave rectifier.	6
, a. b.	Show how a half wave precision rectifier can be combined with a summing circuit to produce a	0
υ.	full wave precision rectifier. Explain.	8
c.	Show how Zenor diodes can be used to limit the output.	6
8 a.	Sketch an Op-Amp precision rectifier peak detector circuit. Explain the circuit operation.	6
b.	Using a BIFET Op-Amp design an astable multi-vibrator to have a ± 9 V output with a frequency of 1 kHz. Draw the circuit diagram.	7
с.	Explain the working of 555 timer as an astable multi vibrator.	7
	UNIT - V	
9 a.	Explain the working of phase shift oscillator.	6
b.	Design a second order low pass filter for a cut-off frequency of 1 kHz. Draw the circuit	
	diagram [use Op-Amp 741].	6
c.	With neat diagram, explain the working of triangular / rectangular wave generator.	8
10 a.	With neat diagram, explain the working of adjustable output regulator.	8
b.	Explain the working of 723 as low voltage regulator.	6
c.	Design LM317 for an output voltage of 9 V.	6