P1	5EC33 Page No 1	
Parton		
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Electronics and Communication Engineering Semester End Examination; Dec - 2017/Jan - 2018 Digital Electronic Circuits ime: 3 hrs Max. Marks: 100	
	<i>te</i> : Answer FIVE full questions, selecting ONE full question from each unit.	
100	UNIT - I	
1 a.	Explain gate performance properties with relevant equations and diagrams.	
b.	Explain with circuit diagram the operation of two input TTL NAND gate.	
c.	What is the significance of wired logic in TTL explain with suitable diagram.	
2 a.	Construct a two input CMOS NAND gate and explain its working principle.	
b.	Explain the operation of an NMOS inverter with neat diagrams.	
	UNIT - II	
3 a.	Find the minimal sum expression for the following incomplete Boolean functions using k-map: $f(w, x, y, z) = \prod M (2, 8, 11, 15) + dc (3, 12, 14)$.	
b.	Transform each of the following canonical expressions into its other canonical form in decimal notations:	
	<i>i</i>) $f(x, y, z) = \prod M(3, 4)$ <i>ii</i>) $f(w, x, y, z) = \sum m(0, 1, 2, 3, 7, 9, 11, 12, 15).$	
c.	Identify all the prime implicants and essential prime implicants of the following function using K-map:	
	$i) f (a,b,c,d) = \overline{a} \ \overline{c} \ d + \overline{a} \ c \ d + \overline{b} \ \overline{c} \ \overline{d} + a \ \overline{b} \ c + \overline{a} \ \overline{b} \ c \ \overline{d}$	
	$ii) f(a,b,c,d) = (a+b+\overline{d})(\overline{a}+b+\overline{d})(a+\overline{b}+\overline{c}+d)(\overline{a}+\overline{b}+\overline{c}+\overline{d})(\overline{a}+\overline{b}+\overline{c}+d)$	
4 a.	Find all the prime implicates of the function using Quine-McClusky algorithm;	
	$f(a, b, c, d) = \Pi m(0, 2, 3, 4, 5, 12, 13) + dc(8, 10)$	
b.	For the given Boolean function apply MEV technique to obtain minimal sum and minimal product expressions.	
	$f = \sum m(3, 4, 5, 7, 8, 11, 12, 13, 15).$	
	UNIT - III	
5 a.	Describe the principle of operation of a 4-bit binary adder / subtractor with a block diagram.	
b.	Realize the following Boolean expression using an active high decoder. The gate should be	

 $f_1(x_2, x_1, x_0) = \sum m(0, 1, 3, 4, 5, 6)$ $f_2(x_2, x_1, x_0) = \sum m(1, 2, 3, 4, 6)$

selected to minimize the total number of input terminals.

Contd....2

5

P15EC33

Page No... 2

- c. Describe the principle of 8-to-3 line encoder. Why priority encoders are developed? With the condensed truth table for 8-to-3 line priority encoder.
- 6 a. Realize the Boolean expression:

 $f(w, x, y, z) = \sum m(0, 1, 5, 6, 7, 9, 13, 14)$ using multiplexer tree structure. The first level should consist of three 2-to-1 line multiplexer with a variable y on its select line. The second level should consist of a 4-to-1 line multiplexer circuit variables w and x on their select lines S₁ and S₀ respectively.

b. Using the PAL device draw the logic diagram of a realization in PLD notation for the following set of Boolean functions.

$$f_1(x, y, z) = \sum m(1, 2, 4, 5, 7)$$

$$f_2(x, y, z) = \sum m(0,1, 3, 5, 7).$$

UNIT - IV

7 a.	Implement SR Latch operation. Write its logic symbol and function table. List the difference between a latch and a flip – flop.	10		
b.	Explain the operation of gated D-latch. Write its logic symbol and function table. Which	10		
	problem is eliminated in D-Latch as compared to SR and \overline{SR} latch?			
8 a.	Explain the operation of pulse triggered master slave JK flip flop with timing diagram. Write	10		
	its excitation table.	10		
b.	Analyze the working of positive edge triggered D flip flop with neat diagram and function	10		
	table.	10		
UNIT - V				
9 a.	What is a register? Explain the operation of 4-bit Serial-in-Parallel out and 4-bit Parallel-in-	10		
	Serial out shift register using D flip flop.	10		
b.	Design and implement synchronous mod-6 counter using clocked D flip flops.	10		
10 a.	Explain the addressing modes of 8086 microprocessor.	10		
b.	Discuss in detail register organization and memory segmentation in 8086 microprocessor.	10		

* * *

10