

## P.E.S. College of Engineering, Mandy - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Third Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; Dec - 2017/Jan - 2018
Network Analysis
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.
UNIT - I
1 a. Transform the network given in Fig. Q 1(a) into a single voltage source using source transformation.


## fig Q. (b)

c. Find the current through $0.5 \Omega$ resistances in the Fig. Q 1(c) using node analysis.


2 a. Determine the equivalent resistance between the terminals $A$ and $B$ in the network in the Fig. Q 2(a) using star-delta transformation.

b. Derive expression for resonant frequency in series RLC circuit.
c. Give the comparison between series and parallel resonance.

UNIT - II
3 a. State and explain superposition theorem.
b. Obtain the current $\mathrm{I}_{\mathrm{x}}$ in the circuit shown in Fig. Q 3(b) using Thevenin's theorem.

c. Find the value of load resistance $\mathrm{R}_{\mathrm{L}}$ for maximum power to be transferred to the load and also find maximum power for the network shown in Fig. Q 3(c).


4 a. Define with examples :
(i) Oriented graph
(ii) Tree
(iii) Cutset matrix
(iv) Tie set matrix.
b. For the network shown in Fig. 4(b) write a tie set schedule and then find all the branch currents and voltages.


UNIT - III
5 a . Switch k is opened at time $t=0$ after reaching steady state in the circuit shown in Fig. Q 5(a). Find $V_{k}, \frac{d v_{k}}{d t}$ and $\frac{d^{2} V_{k}}{d t^{2}}$ at time $t=0^{+}$.


$$
\text { Fig } Q(5)(a)
$$

b. In the circuit shown in Fig. Q 5(b) switch is opened at time $t=0$, find the values of $v \frac{d v}{d t}$ and $\frac{d^{2} v}{d t^{2}}$ at $t=0^{+}$.


6 a. Switch is closed at time $t=0$ in the circuit shown in Fig. Q (6) (a), find the values of $\mathrm{i}_{1}, \mathrm{i}_{2}$, $\frac{d i_{1}}{d t}, \frac{d i_{2}}{d t}$ at time $t=0^{+}$.

b. State and prove Initial value theorem.
c. In the circuit shown in Fig. Q 7(c), find the expression for current, if switch is closed at $t=0$. Assume initial charge on capacitance is zero.

(ii) $\frac{2 s+6}{s^{2}+6 s+25}$.
b. Using initial and final value theorem where they apply find $f(0)$ and $f(\infty)$ for the following functions:
(i) $\frac{s^{3}+7 s^{2}+5}{s\left(s^{3}+3 s^{2}+4 s+2\right)}$
(ii) $\frac{s(s+4)(s+8)}{(s+1)(s+6)}$.
c. Find $i(t)$ using Laplace transforms switch is closed at time $t=0$ with zero initial conditions.

b. Find the response $i(t)$ when input signal,
(i) $5 \delta(\mathrm{t}-2)$
(ii) $5 \mathrm{u}(\mathrm{t}-2)$ is given to a R-L series circuit shown in Fig. 10 (b) assume initial current through the inductor to be zero.


*     *         * 

