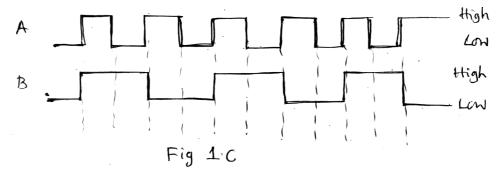
U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)


Third Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; Dec - 2017/Jan - 2018 Digital Electronics

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. With the help of circuit diagram, explain the working of,
 - i) NAND
- ii) NOR
- iii) X-OR Gate.
- b. Show that $(A+B)(\overline{AB}) = A \oplus B$ with logic diagram.
- c. The waveforms A and B shown in Fig. 1.c are applied to a two input NAND gate. Determine the output waveform:

- 2 a. State and prove De Morgan's theorem.
 - b. Realize the XOR function using NOR logic only.
 - c. With examples, explain the SOP and POS standard forms to express Boolean function.

UNIT-II

- 3 a. $F(A B C D) = \Sigma m(1, 5, 6, 12, 13, 14) + d(2, 4)$ reduce by K-map and implement using NOR logic.
- b. Distinguish between prime implicants and essential prime implicants.
- c. Outline the basic Quine Mc-Cluskey procedure for simplifying a Boolean expression.
- 4 a. Design Half adder using NOR logic.
 - b. What is parallel binary adder? With example, demonstrate the working of binary adder.
 - c. With block diagram and truth table, explain the implementation of full subtrator.

UNIT - III

- 5 a. Design BCD to decimal decoder with use of decoder.
 - b. Explain the operation of basic SR Latch with NOR gates.
- c. Convert JK flip-flop to T flip-flop.

8

10

6

4

8

6

6

8

6

6

10

4

6

6

6

P15EE34 Page) '				
6 a.	Obtain the characteristic equation of :					
	i) JK flip-flop	8				
	ii) Edge triggered D flip-flop.					
b.	. Implement the 4 to 1 line multiplexer with block diagram and function table.					
c.	Convert JK flip-flop to D flip-flop.					
	UNIT - IV					
7 a.	. Distinguish between synchronous and asynchronous counters.					
b.	With a neat timing diagram, explain the working of serial-in-parallel-out shift register.					
c.	Explain the operation of Four-bit synchronous binary counter.					
8 a.	. Explain the Mealy and Moore models of clocked synchronous sequential network.					
b.	. Write a block diagram of a finite state model and explain.					
c.	Define;					
	i) State diagram ii) State tabel	4				
	iii) Transition tabel iv) Excitation tabel.					
	UNIT - V					
9 a.	Draw the schematic circuit and explain the operation of R-2R Ladder type DAC.					
b.	Draw and explain basic block diagram of a 4 bit successive approximation type ADC.					
10 a.	Draw and explain the operation of 3 bit Flash type A/D converter.					
b.	. List the different types of Logic families circuits and compare them Emitter-coupled de	elay 5				
	time.					
c.	Outline the characteristics of Emitter-Coupled Logic (ECL).					