P15	EE551 Page No 1	
	U.S.N	
A A A A A A A A A A A A A A A A A A A	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Electrical and Electronics Engineering Semester End Examination; Dec - 2017/Jan - 2018 Operational Amplifiers and Linear Integrated Circuits	
Tir	ne: 3 hrs Max. Marks: 100	
Not	e: i) Answer FIVE full questions, selecting ONE full question from each unit ii) Use of standard registers, capacitors and data sheets of Op-Amps are allowed. UNIT - I	
1 a.	Sketch the circuit for capacitor coupled voltage follower. Design and explain its operation.	10
b.	A capacitor coupled non-inverting amplifier using 741 Op-Amp is to have $A_v = 100$ and	
	$V_s = 5$ V. The load resistance is 10 k Ω and lower cut-off frequency is to be 100 Hz. Design	1
	a suitable circuit.	
2 a.	Sketch the circuit of high input impedance capacitor coupled non-inverting amplifier. Briefly explain the circuit diagram.	1
b.	Draw a sketch to show how a capacitor coupled voltage follower should be with a single polarity supply. Briefly explain.	1
	UNIT - II	
3 a.	Show how feedback on an Op-Amp inverting amplifier can produce instability. State the	4
	Bark Hausen criteria and explain condition for oscillations.	10
b.	Explain Miller effect, and show how it can be used to stabilize an Op-Amp circuit.	10
4 a.	Define bandwidth, gain bandwidth product and unity gain frequency for an Op-Amp. Briefly explain.	8

b. Determine the typical upper cutoff frequency for the inverting amplifier in Fig. 1.

0-WW-22-100/22 1K2 3+18 2 LM 108 K3 11K2 Cf

When the compensating capacitor (c_f) value is, i) 30 pF ii) 3 pF.

c. Explain how load capacitance can cause instability?

UNIT - III

5 a. Sketch the circuit of a saturating type half-wave precision rectifier. Explain with neat waveforms.

4

8

P15EE551 Page No 2				
b.	Design a precision full wave rectifier to produce a 2 V peak output from a sine wave input			
	with a 0.5 peak value and 1 MHz frequency use bi-polar Op-Amps with a supply voltage of	10		
	±15 V.			
6 a.	Design a triangular waveform generator to produce a ± 2 V, 1 kHz output. Use ± 15 V	10		
	supply and specify the minimum Op-Amp SR (Slew Rate).	10		
b.	Explain the operation of Wein-bridge oscillator with neat diagram.	10		
UNIT - IV				
7 a.	Sketch the circuit of an Op-Amp employed as a non-inverting zero-crossing detector.	10		
	Explain with neat waveforms.	10		
b.	Sketch and explain a typical input /output characteristics for an inverting Schmitt trigger	10		
	circuit.	10		
8 a.	Sketch the circuit of a second order low pass active filter and explain its operation.	10		
b.	Define cutoff frequency, bandwidth, pass band, stop band and insertion loss.	10		
UNIT - V				
9 a.	Draw the circuit of a state-variable filter. Briefly explain the circuit operation and write	10		
	equations for Q and f_0 .	10		
b.	Draw the basic block diagram and waveforms for a PLL system. Explain briefly.	10		
10 a.	With reference to voltage regulator, define source effect, load effect, line regulation and	10		
	load regulation with equations.	10		
b.	Design the voltage regulator circuit to produce a 12 V output with a 50 mA maximum load	10		
	current.	10		

* * *