P15IP561	Page No 1	
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E Industrial and Production Engineering Semester End Examination; Dec - 2017/Jan - 2018 Composite Materials		
Time: 3 hrs	Max. Marks: 100	
Note: Answer FIVE full qu	uestions, selecting ONE full question from each unit. UNIT - I	
1 a. Define composite. Explain in detail how composites are classified?		10
b. List and explain the types of Matrix Materials used in composites.		10
2 a. Explain the importance of sandwich structures in composites.		7
b. List the advantages and limitations of composite.		
c. Write a note on :		8
i) Carbon Nano-Fiber	ii) Nano-clay.	0
	UNIT - II	
3 a. Explain the role of con	nposites in the following fields :	
i) Automobile sector	ii) Recreational and Sports equipment's	20
iii) Marine sector	iv) Electrical and Electronics sectors.	
4 a. Define Metal Matrix C MMC's?	Composites (MMC's). Explain how the reinforcements are selected in	10
b. With a neat sketch, exp	plain how graphite fibers are produced by PAN-based precursors?	10
	UNIT - III	
5 a. Derive an expression of Nine independent constants for orthotropic material.		10
b. For a graphite / epoxy unidirectional lamina the Young's modulus $E_1 = 170$ GPa,		
$E_2 = 9.5$ GPa. Major F	Poisson's ratio $\delta_{12} = 0.28$, Shear modulus $G_{12} = 6.8$ GPa, then find the	
following :		10
i) Compliance Matrix		10
ii) Minor Poisson's Ra	atio	
iii) Reduced stiffness	matrix.	
6 a. Derive an expression for Hooke's law for a 2-Dimensional angle lamina.		14
b. The stresses in the global axes of a 30° ply are given by $\sigma_x = 4$ MPa, $\sigma_y = 2$ MPa and		
$\tau_{xy} = -3$ MPa. Calculate	e the stresses in the local axes.	6
	UNIT - IV	
7 a. Develop an expression	n for strain-displacement by considering Classical Lamination Theory	8
(CLT).		-
	Contd 2	

Contd...2

Page No... 2

12

5

P15IP561

b. Find the 3-stiffness matrices [A], [B] and [D]for a 3-ply [0 / 30 / -45] graphite epoxy laminates as shown in Fig 1. Assume that each lamina has a thickness of 5 mm, given $E_1 = 38.6$ GPa, $E_2 = 8.27$ GPa, $\delta_{12} = 0.26$, and $G_{12} = 4.14$ GPa.

- 8 a. Derive an expression for the stiffness matrices [A], [B] and [D] for an isotropic material in terms of its thickness (*t*), Young's modulus (E) and Poisson's Ratio δ.
 - b. Write a note on laminate code.

```
UNIT - V
```

9 a. Explain the injection moulding process with a neat sketch.	
b. With a neat sketch, explain pressure Bag Moulding Process.	7
c. Write a note on ultrasonic inspection used in composites.	5
10 a. Explain filament winding process with a neat sketch.	
b. List and explain the different types of defects in composites.	
c. Explain how drilling operations are carried out in composites?	5

* * *