U.S.N \square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fifth Semester, B.E. - Industrial and Production Engineering Semester End Examination; Dec - 2017/Jan - 2018

Composite Materials
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit. UNIT - I
1 a. Define composite. Explain in detail how composites are classified?
b. List and explain the types of Matrix Materials used in composites.

2 a. Explain the importance of sandwich structures in composites.
b. List the advantages and limitations of composite.
c. Write a note on :
i) Carbon Nano-Fiber
ii) Nano-clay.

UNIT - II

3 a. Explain the role of composites in the following fields:
i) Automobile sector
ii) Recreational and Sports equipment's
iii) Marine sector
iv) Electrical and Electronics sectors.
4 a. Define Metal Matrix Composites (MMC's). Explain how the reinforcements are selected in MMC's?
b. With a neat sketch, explain how graphite fibers are produced by PAN-based precursors?

UNIT - III

5 a. Derive an expression of Nine independent constants for orthotropic material.
b. For a graphite / epoxy unidirectional lamina the Young's modulus $\mathrm{E}_{1}=170 \mathrm{GPa}$, $\mathrm{E}_{2}=9.5 \mathrm{GPa}$. Major Poisson's ratio $\delta_{12}=0.28$, Shear modulus $\mathrm{G}_{12}=6.8 \mathrm{GPa}$, then find the following :
i) Compliance Matrix
ii) Minor Poisson's Ratio
iii) Reduced stiffness matrix.

6 a. Derive an expression for Hooke's law for a 2-Dimensional angle lamina.
b. The stresses in the global axes of a 30° ply are given by $\sigma_{x}=4 \mathrm{MPa}, \sigma_{y}=2 \mathrm{MPa}$ and $\tau_{x y}=-3 \mathrm{MPa}$. Calculate the stresses in the local axes.

UNIT - IV

7 a. Develop an expression for strain-displacement by considering Classical Lamination Theory (CLT).

P15IP561

b. Find the 3-stiffness matrices $[A]$, [B] and [D]for a 3-ply [0/30/-45] graphite epoxy laminates as shown in Fig 1. Assume that each lamina has a thickness of 5 mm , given $\mathrm{E}_{1}=38.6 \mathrm{GPa}, \mathrm{E}_{2}=8.27 \mathrm{GPa}, \delta_{12}=0.26$, and $\mathrm{G}_{12}=4.14 \mathrm{GPa}$.
 terms of its thickness (t), Young's modulus (E) and Poisson's Ratio δ.
b. Write a note on laminate code.

UNIT - V

9 a. Explain the injection moulding process with a neat sketch.
b. With a neat sketch, explain pressure Bag Moulding Process.
c. Write a note on ultrasonic inspection used in composites.

10 a . Explain filament winding process with a neat sketch.
b. List and explain the different types of defects in composites. 7
c. Explain how drilling operations are carried out in composites?

