P15IS32 Page No 1				
	U.S.N			
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineering Semester End Examination; Dec - 2017/Jan - 2018 Digital Design Time: 3 hrs Max. Marks: 100				
Note	e: Answer FIVE full questions, selecting ONE full question from each unit.			
	UNIT - I			
1a.	Obtain the prime implicants of the function :	10		
	$f(w, x, y, z) = \Sigma m(0, 5, 6, 7, 9, 10, 13, 14, 15)$	10		
b.	Simplify the following expressions :			
	(i) $(x+xy)(\overline{x}+y)+yz$ (ii) $\overline{wzy}+wz+\overline{yz}+xyz$	10		
	(iii) $F(A, B, C, D) = \Sigma m(7) + d(10, 11, 12, 13, 14, 15).$			
2 a.	Define combinational network. Explain with a block diagram.	5		
b.	Define logical gate. List out the universal gates and implement NAND gate using only NOR and X-OR gates.	12		
c.	Draw the synthesis of a gate combinational network for the following functions :			
	(i) $f(w, x, y, z) = \overline{w}x + \overline{x}(y+z)$ (ii) $f(w, x, y, z) = \overline{w}x + \overline{x}y + \overline{x}z$.	3		
UNIT - II				
3 a.	Define decoder. Draw logic diagram of 3:8 decoder with enable input.	10		
b.	Discuss the parallel (ripple) binary adder with a suitable sketch.	10		
4 a.	Discuss the 4-bit carry lookahead adder with suitable sketch.	10		
b.	Realize a decoder of $f_1(x_2, x_1, x_0)_2 = \pi M(0, 1, 3, 5)$ and $f_2(x_2, x_1, x_0)_2 = \pi M(1, 3, 6, 7)$,	1.0		
	i) Using output OR-gates ii) Using output NOR-gates.	10		
	UNIT - III			
5 a.	Write short notes on the following with suitable examples :	10		
	i) ROM ii) PROMS iii) EPROMS.	10		
b.	What are the output voltages caused by each bit in a 5-bit ladder, if the input levels are $0 = 0$ V and $1 = +10$ V.	10		
6 a.	Discuss the 3-bit simultaneous A/D convertor using a logic diagram and using a	12		
b.	9318 priority encoder. Discuss the concept of Dual-slope A/D converter with a suitable sketch.	8		

Page No... 2

UNIT - IV

7 a.	Differentiate between Pulse Triggered flip-flops versus Edge Triggered flip-flops with	10	
	suitable examples. Explain the working of SR and JK flip-flops.	12	
b.	Discuss any two types of registers of your choice with suitable sketches.	8	
8 a.	Discuss the following with suitable sketches :	10	
	i) Ring counter ii) Johnson counter.	12	
b.	Discuss the various characteristics of ideal clock waveforms.	8	
UNIT - V			
9 a.	Show a method for constructing a 5 x 2 (Mod-10) decade counter.	12	
b.	Design the modulo-6 counter with corresponding state table and design equations with a	8	
	suitable state diagram.		
10 a.	Explain synchronous 3 bit up-down counter.	10	
b.	Discuss the concept of mod-8 parallel binary counter.	10	

* * *

P15IS32