<i>U.S.N</i>	7
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, B.E Information Science and Engineering Semester End Examination; Dec - 2017/Jan - 2018	
Discrete Mathematical Structures Time: 3 hrs Max. Marks: 100	
<i>Note:</i> Answer FIVE full questions, selecting ONE full question from each unit.	
UNIT - I	
1 a. Define the following terms with an example for each.	6
i) Sum and Product Rule of Counting theory ii) Permutations and Combinations.	0
b. In how many ways can we distributed 10 identical marbles among six children such that	
i) No restriction ii) Each child is given a marble	7
iii) First child gets exactly 5 marbles.	
c. State Binomial theorem and determine the coefficient of $x^4 y^4 z^{20}$ in the expression	
$(4x - \frac{y}{2} + 3z + 5)^{30}$	7
2 a. Using membership table method verify for any three sets A, B, C	
$A - (B \cup C) = A - (B - C) = (A - B) - C.$	6
b. Find the number of integers between 1 to 1000 which are:	
i) Not divisible by 2 or 3 or 5 ii) Exactly divisible by one of 2,3,5.	7
c. Two tickets are selected at random out of 50 tickets numbered 1, 2, 350. What is	_
the probability that the sum of the numbers of the tickets chosen is even?	7
UNIT - II	
3 a. Prove law of syllogism and law of detachment to be tautological statements.	6
b. Prove logical equivalence without using truth table.	C
<i>i</i>) $p \land (p \lor (p \land q)) \equiv p$ <i>ii</i>) $[(p \rightarrow q) \rightarrow r] \equiv (\neg p \lor q) \rightarrow r)$	6
c. Text the validity of the argument. If I study then I will not fail in Maths. If I don't play	
basketball, then I will study. But I failed in Maths. Therefore I must have played	8
Basketball".	
4 a. Negate the quantified statements and represent each with a unique universe.	
i) All birds have wings ii) All real numbers are complex numbers	6
iii) Some integers are divisible by 5 iv) Some triangles are equilateral.	
b. Let, $p(x)$: x is even $q(x)$: x is prime.	
Find the truth value of;	6
$i)\forall x \ p(x) \qquad ii) \exists q(x) \qquad iii)\forall x \ p(x) \land q(x)$	
$iv)$ $\exists_x p(x) \to \neg q(x) v) \forall x \ p(x) \lor q(x) vi)$ $\exists_x p(x) \land q(x)$	

8

c. Express the argument in symbolic form and check its validity "No Engineering student is bad in studies. Anil is not bad in studies. Therefore Anil is an Engineering student".

UNIT - III

	UNIT - III		
5 a.	Prove by Mathematical Induction Principle that.	6	
	$n! \ge 2^{n-1} \forall n \ge 1.$	0	
b.	"If n is an odd integer then $n+11$ is an even integer". Give a,	6	
	i) Direct proof ii) Indirect Proof iii) Proof by contradiction.	0	
c.	Let L_n denote n th Lucus number and F_n denote n th Fibonacci number then,		
	Prove that $L_n = F_{n-1} + F_{n+1} \forall n \in Z^+$	8	
	[Hint $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2} \forall n \ge 2$].		
6 a.	Let $ A = m$ and $ B = n$ find		
	i) How many functions are there from A and B	6	
	ii) Among them how many are one-one	Ū	
	iii) Among them how many are onto.		
b.	Find the number of ways of distributing 7 distinct objects into four labelled containers such	6	
	that no container is left empty?	0	
c.	Consider the functions f and g defined by		
	$f(x) = x^3$ and $g(x) = 3x + 5y \forall x \in \mathbb{R}$		
	$h(x) = \begin{cases} 2x+1 & x \ge 1\\ -2x+5 & x < 1 \end{cases}$	8	
	Find $f \circ g, g \circ f, f^2, g^2, f \circ g \circ h, h \circ g \circ f, h^2, g \circ h.$		
UNIT - IV			
7 a.	Define an equation relation. Prove that if R is a relation defined as: (a, b) \in R, iff $a^2 = b^2$ on	_	
	A = $\{-2, -1, 0, 1\}$ is an equivalence relation and also find the partition induced by R on A.	7	
b.	Prove the following statements:		
	<i>i</i>)If R and S are equivalence relations on A Then $R \cap S$ is also equivalence	7	
	ii) If R and S are equivalence relatrions $R \bigcup S$ need not be an equivalence relation on A		
c.	Let A = {1, 2, 3, 4} and R = {(1, 2) (1, 3) (2, 4) (3, 2) (3, 3) (3, 4)}. Find R^2 and R^3 and	6	
	write down their matrix and diagraphs.	0	
8 a.	Draw the Hasse's diagram representing the POSET (A, R)	7	
	Where $A = \{1, 2, 3, 6, 20, 36, 50\}$ and "R" is "exactly divides" and Prove that R is a		
	partially ordered relation.		

7

6

7

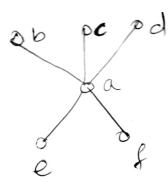
7

6

6

6

- b. Define the following terms and find the same for the graph given representing a POSET
 - (A, R)



eatest

- iii) LUB $\{a, e\}$ iv) GLB $\{a, f\}$.
- c. Write the steps involved in topological sorting algorithm.

UNIT - V

- 9 a. If o is an operation on \mathbb{Z} defined by $x \circ y = x + y + 1$ Prove that (\mathbb{Z} 0) is an abelian group.
 - b. Prove that the group $(Z_4, +)$ is cyclic. Find all its generators.
 - c. Define homomorphism, Isomorphism between two groups G₁and G₂ with an example for each.
- 10 a. Explain encoding and decoding of a message with usual notations.
 - b. An encoding function $E: \mathbb{Z}_2^2 \to \mathbb{Z}_2^5$ is given by generator matrix

$$G = \begin{bmatrix} 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 1 \end{bmatrix}$$
8

i) Find the associated parity check matrix H

ii) Use H to decode the received words 11101, 11011

c. Prove that $\forall x, y \in \mathbb{Z}_2^m, wt(x+y) \le wt(x) + wt(y)$.

* * *