6

6

7

U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; Dec - 2017/Jan - 2018 Engineering Mathematics - I

(Common to all Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Find the n^{th} derivative of :

(i)
$$y = \log_{10} \left[(1 - 2x)^3 (8x + 1)^5 \right]$$
 (ii) $y = e^{2x} \sin^3 x$.

b. Find the n^{th} derivative for the function $y = \frac{x^2 - 4x + 1}{x^3 + 2x^2 - x - 2}$.

c. If
$$y = (\sin^{-1} x)^2$$
 show that, $(1-x^2)y_{n+2} - (2n+1)xy_{n+1} - n^2y_n = 0$.

2 a. Find the angle of intersection of curves $\frac{2a}{r} = 1 + \cos\theta$ and $\frac{2b}{r} = 1 - \cos\theta$.

b. Find the Pedal equation of the curve
$$r^n = a^n \cos n\theta$$
.

c. Prove that the radius of curvature for the curve
$$r(1-\cos\theta) = a$$
 is $2\sqrt{\frac{2r^3}{a}}$.

UNIT - II

3 a. Apply Rolle's theorem and verify the same for the function:

$$f(x) = e^{x} \left(\sin x - \cos x \right) in \left[\frac{\pi}{4}, \frac{5\pi}{4} \right].$$

b. State Lagrange's mean value theorem and verify the same for f(x) = x(x-1)(x-2) in $[0, \frac{1}{2}]$.

c. State Cauchy's mean value theorem and verify the Cauchy's mean value theorem for :

$$\log_e x$$
 and $\frac{1}{x}$ in [1, e].

4 a. Expand Taylor's series expansion of $\cos x$ about $x = \frac{\pi}{3}$ upto four non-zero terms.

b. Obtain the Maclaurin's series of log(1+x) and hence decuce that,

$$\log \sqrt{\frac{(1+x)}{(1-x)}} = x + \frac{x^3}{3} + \frac{x^5}{5} + \dots$$

c. Find the values of a and b such that,
$$\lim_{x \to 0} \left(\frac{x(1 + a\cos x) - b\sin x}{x^3} \right) = 1.$$

7

6

7

UNIT - III

5 a. If
$$u = \log(x^3 + y^3 + z^3 - 3xyz)$$
 then prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = \frac{3}{x + y + z}$.

b. If
$$u = \tan^{-1} \left(\frac{x^3 + y^3}{x - y} \right)$$
 then prove that using Euler's theorem:

(i) $xu_x + yu_y = \sin 2u$ (ii) $x^2u_{xx} + 2xyu_{xy} + y^2u_{yy} = \sin 4u - \sin 2u$.

c. If
$$H = f(x - y, y - z, z - x)$$
 show that $\frac{\partial H}{\partial x} + \frac{\partial H}{\partial y} + \frac{\partial H}{\partial z} = 0$.

6 a. A particle moves along the curve $x = t^3 + 1$, $y = t^2$, z = 2t + 3 where 't' is the time. Compute the time components of its velocity and acceleration at t = 1 in the direction $\hat{i} + \hat{j} + 3\hat{k}$.

b. Find the directional derivative of $\phi = x^2yz + 4xz^2$ at (1, -2, -1) along $2\hat{i} - \hat{j} - 2\hat{k}$.

c. If $\vec{F} = (x+y+1)\hat{i} + \hat{j} - (x+y)\hat{k}$ show that curl $\vec{F} \cdot \vec{F} = 0$.

UNIT - IV

7 a. Obtain the reduction formula for: $\int \sin^n x dx$ and $\int_{0}^{\frac{\pi}{2}} \sin^n x dx$. Where *n* is positive integer.

b. Evaluate: $\int_{0}^{\frac{\pi}{6}} \cos^4 3x \cdot \sin^3 6x \, dx \text{ using reduction formula.}$

c. Trace the curve $y^2(2a-x)=x^3$, a>0.

8 a. Find the length of an arch of the cycloid $x = a(t - \sin t)$, $y = a(1 - \cos t)$.

b. Find the area of enclosed by the Astroid $x^{2/3} + y^{2/3} = a^{2/3}$.

c. By using the rule of differentiation under the integral sign, evaluate $\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx$, $\alpha \ge 0$.

UNIT - V

9 a. Solve: $[y(1+\frac{1}{x})+\cos y]dx + [x+\log x - x\sin y]dy = 0.$

b. Solve: (x-4y-9)dx+(4x+y-2)dy=0.

C. Solve: $(1+x^2)dy = (\tan^{-1} x - y)dx$.

10 a. Solve: $(x^2 + y^2 + x)dx + xydy = 0$.

b. Find the orthogonal trajectory of the family of curve $y^2 = 4a(x+a)$.

c. A body originally at 100°C cools down to 70°C in 15 minutes, the temperature of the air being 30°C. What will be the temperature of the body after 40 minutes from the original?