P15MCAD31	Page No 1
U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, M. Tech - Civil Engineering (MCAD) Semester End Exemination: Dec. 2017/Jap. 2018	
Semester End Examination; Dec - 2017/Jan - 2018	
Advanced Design of RC Structural Elements	
T : 01	

Time: 3 hrs

Max. Marks: 100

Note: i) Answer FOUR full questions, selecting ONE full question from each unit. *ii)* Use of IS456 and SP16 are permitted. iii) Assume missing data if any.

UNIT - I

- A continuous beam of a multi-storey frame has spans of each of 8 m. The characteristic dead load is 10 kN/m and live load is 15 kN/m. Design the critical sections of the beam and sketch the details of reinforcements. Use M20 grade concrete and Fe415 steel.
- Design a continuous beam of two spans supported on BB masonry walls using the limit method and allowing for 15% redistribution of moments. The following data may be used. Data :

Clear span between supports = 6 m

Width of masonry supports = 330 mm

Depth of RC slab = 150 mm

Spacing of continuous beams = 3 m c/c

Self weight of floor finish = 0.4 kN/m^2

Live load on floor = 4 kN/m^2

Use M20 concrete, Fe415steel.

UNIT - II

- 3. Design an interior panel of a flat slab of size 5 m x 5 m without providing drop and column head size of columns is 500 x 500 mm and live load on the panel is 4 kN/m². Take floor finishing load as 1 kN/m². Use M20 concrete and Fe415 steel. Sketch reinforcement details.
- 4. A circular slab of diameter 6 m is subjected to a super imposed load of 4 kN/m². It may be considered as simply supported. Using M20 concrete and Fe415 steel design the slab and sketch the details of reinforcement.

UNIT - III

5. The roof of 8 m wide hall is supported on a portal frame. Space data 3.5 mc/c. The height of a portal frame is 3.6 m. The continuous slab is 120 mm thick. The slab is loaded with live load of 1.5 kN/m² and F.F. is 0.75 kN/m². Base of the column are fixed. SBC of soil is 200 kN/m². Design the portal frame (Beams and columns only) and sketch reinforcement details. Use M30 grade concrete and Fe415 steel.

25

25

25

25

6. A RC braced column 300 mm x 400 mm is subjected to $P_u = 1500$ kN and ultimate moments $M_y = 60$ kN-m at top and $M_y = 8$ kN-m at the bottom. If the column is bent in double curvature, about minor axis (y-axis) determine the design moments. Take unsupported length equal to 8 m and effective length as 6 m about both the axes. Assume $K_a = 1$.

UNIT - IV

- 7. Design the side walls and hopper bottom of a rectangular bunker of capacity 300 kN to store coal using M20 concrete and Fe415 steel. Density of coal is 8 kN/m³. Angle of repose of Coal = 25 degrees. Sketch the details of reinforcement. Coefficient of friction between coal and concrete = $\mu' = 0.444$.
- A silo with internal diameter 5.5 m height of cylindrical portion 18 m and central opening with 0.5 m is to be built to store wheat. Design the silo using M20 grade concrete and Fe415 steel. The following data may be used :

Unit weight of wheat = 8.5 kN/m^3

Angle of internal friction = 28°

Angle of wall friction = 0.75ϕ while filling

 $= 0.60 \phi$ while emptying

Pressure ratio = $\frac{P_h}{P_v} = K = 0.5$ while filling

Use Janesen's theory for pressure calculations.

* * *

25

25