P1	5MCAD331						Page No 1						
	U.S.I												
Ti	P.E.S. College of Engineering (An Autonomous Institution affiliat Third Semester, M.Tech Civil H Semester End Examination; De Computer Aided Design of States	ed to ngi c - 2	<i>VT</i> neer 017/	<i>U, B</i> ing Jan	elaga (MC - 20	avi) CAD 018			s: 1				
	nte: Only of the office	estic	n fra	m ea	ch ur				<u>.</u>	<u> </u>			
1.10	UNIT - I		n ji e										
1 a.	Explain the effects of shape factors, Depth factors,	Ecc	entric	-incl	ined	loads	s, an	d in	clina	ation			
	factors as used in generalized bearing capacity equati						,						
b.	Design an isolated footing for a column of 400 mm		mm	size	subje	ected	to a	vert	ical	load			
	of 360 kN, moment of 400 kN-m and the shear load	of 36	50 kN	, the	soil	prope	erty i	s as	foll	ows:			
	$C = 6 \text{ kN/m}^2$, $\phi = 39^\circ$ and Bulk density = 18 kN/m^3 .												
2 a.	What are the different types of settlements that occur	in a :	found	latior	n? Ho	ow ar	e the	y est	tima	ted?			
b.	A square footing 2 M wide is proposed on a 10 M	thick	grou	nd, 1	nade	of n	orma	ally s	satur	ated			
	clay, to carry a load of 800 kN, Estimate the total set	leme	nt, us	sing t	he fo	llowi	ing d	etail	s:				
	i) Water content = 30% ii) Liquid	limit	= 80)%									
	iii) Saturated density = 18 kN/m^3 iv) Soil M	odul	$\mathfrak{ls} = \mathfrak{l}$	24 M	Pa								
	v) Poisson's ratio = 0.3 vi) Inclina	tion	facto	r = 0).87								
	vii) Coefficient of secondary compression $= 0.0002$.												
	A laboratory sample 48 mm thick with double drain	age f	acilit	y exp	erier	nced o	comp	olete	solu	ition			
	under same pressure, in two hours, life span of struc	ure	= 15) yea	rs. A	ssum	ne sir	ngle	draiı	nage			
	from top of the field. Take $G = 2.7$.												
	UNIT - II												
3 a.	Discuss the factors influencing the selection of depth	of fo	unda	tion.									
b.	b. Discuss the method of foundation analysis by soil line method.												
4.	Draw the bending moment diagram for the combined footing using finite difference approach								ch				
	Length of combined footing = 6.12 M												
	Depth of combined footing = 0.85 M												
	Consider a column load of 700 kN acting at a distance						-						

column load is 270 kN acting at a distance of 0.18 M from the right edge of the footing. The value of modulus of a sub grade reaction = 5×10^4 kN/m³ is determined from plate load test conducted on a plate of 30 cm x 30 cm size. Consider E = 0.2×10^8 kN/m². Width of footing = 1.2 M.

UNIT - III

- 5 a. Explain the procedure for separating frictional component from tip resistance using cyclic pile load test.
- b. Discuss the use of penetration tests for estimating the load carrying capacity of piles.
- Design a friction pile group to carry a load of 3000 kN including the weight of pile cap at a site where the soil uniform clay to a depth 20 M, underlain by rock. Average unconfined compression strength of clay is 70 kN/m². The clay may be assumed to normal sensitivity and normally consolidated with liquid limit +60%. A FOS of 3 is required against shear failure.

UNIT - IV

- 7 a. Give necessary information required for design and construction of transmitting line tower foundation.
- b. How is the safety of tower foundation checked against uplift, overturning and lateral thrust?
- 8. Design a suitable foundation for a 20° angle tower to be used in a double circuit 132 kV transmission line. The foundation is located in medium dense sand with $\phi = 30^{\circ}$, $\Upsilon = 17 \text{ kN/m}^3$, Depth of the ground water table is 5.0 M below the ground level use load factors of 2 and 1.5 for normal and broken wire conditions respectively. The foundation is subjected to the following loading:

Name of load	Load in kN	Under condition			
	N.C.	B.W.C.			
Downward	400	450			
Uplift	300	380			
Power in transverse direction	3.3	25			
Shear in longitudinal direction		16			

UNIT - V

9 a.	Discuss criteria for the design of foundation for reciprocating machine.	10
b.	Explain vibration insulation.	10
10 a	. Explain Barkan's method of machine foundation design.	10
b.	Explain the block vibration test for vertical vibration.	10

* * *

20

10

10

10