

c. At the inlet to a certain nozzle, the enthalpy of fluid entering is 3021 kJ/kg and the velocity is 61 m/s. At the exit of the nozzle, the enthalpy of the fluid is 2787 kJ/kg. Assuming that the nozzle is horizontal and adiabatic, find the velocity of fluid at exit.

6

	P15ME35 Page No 2	
	UNIT - III	
5 a.	Define pure substance and give two examples for pure substance.	4
b.	Draw T-V diagram with relevant details on the plot for pure water.	6
c.	A vessel of volume 0.04 m ³ contains a mixture of water and steam in saturated condition at a	
	temperature of 250°C. The mass of liquid water is 9 kg. Find the pressure, mass, specific volume	10
	enthalpy, entropy and internal energy of the mixture system.	
6 a.	What is a throttling process? What are its important applications?	4
b.	With the help of a neat sketch, explain the working of combined separating and throttling	8
	calorimeter.	0
c.	In a test on a combined separating and throttling the following data were obtained. Pressure of	
	steam sample = 15 bar, pressure of steam at exit = 1 bar, temperature of steam at exit 150°C,	8
	water collected from separating calorimeter = 0.2 kg/min and discharge collected at	0
	exit = 10 kg/min . Determine the dryness fraction of steam sample.	
	UNIT - IV	
7 a.	Define two statement of second law of thermodynamics and show that violation of clasius	10
	statement violates kelvin plank statement of second law.	10
b.	A Carnot engine operates between the two reservoirs at temperature of 627°C and 27°C. The	
	engine drives the reversible refrigerator which operates between 27°C and -23°C. The heat	
	transfer to the heat engine is 2000 kJ and the net output of the combined system of engine and	10
	refrigerator is 200 kJ. Evaluate the net heat transfer from the reservoir at -23°C to the refrigerator	
	and the net heat transfer to the reserves at 27°C.	
8a.	Define the heat engine and heat pump. Prove that "All reversible engines working between the	10
	same two temperature limits have the same efficiency".	10
b.	A reversible engine supplied with two constant temperature sources at 900°K and 600°K and	
	rejects heat to a constant temperature sink at 300°K. If the engine develops 100 kW while	10
	rejecting 3600 kJ/min of heat. Determine heat supplied by each source per minute and efficiency	10
	of the engine.	
	UNIT - V	
	Define entropy and show that entropy is a property of the system.	6
b.	What is principle of increase of entropy? Show that entropy of system and surrounding put	6
	together always increases.	0
c.	In a heat exchanger 45 kg of water / minute is heated from 0°C to 115°C by hot gases which enter	
	the heat exchanger at 225°C. If the flow rate of gas is 90 kg/min. Find the net change of entropy.	8
	Take C_p of gas = 1.0 kJ/kg.°K. Assume no losses.	
10 a.	Starting from $T.ds = du + Pdv$ expression derive an expression for change in entropy for an ideal	6
	gas.	0
b.	Show that entropy change of a system during an irreversible process is always greater than	
	$\frac{dQ}{T}$ or $(S_2 - S_1) > \frac{\delta Q}{T}$	6
c.	A heat engine is supplied with 278 kJ of heat at a constant fixed temperature of 283°C and heat	
	rejection takes place at 5°C. Following are the hypothetical heat rejections. Classify whether the	0

i) 208 kJ/kg of heat rejected ii) 139 kJ/kg of heat rejected iii) 70 kJ/kg of heat rejected.

cycle is reversible, irreversible and imposable

8