P15ME54 Page No 1					
	U.S.N				
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fifth Semester, B.E. – Mechanical Engineering Semester End Examination; Dec - 2017/Jan - 2018 Manufacturing Process - III Time: 3 hrs					
	Answer FIVE full questions, selecting ONE full question from each unit .				
	UNIT - I				
1 a.	Define metal forming. Enumerate the differences between hot working and cold working.	8			
b.	Explain the following concepts of metal forming :	8			
	i) Determination of flow stresses ii) Residual stresses in wrought products.	0			
c.	Derive the relationship between Conventional strain and True strain.	4			
2 a.	Give the differences between wrought products and cast products.	4			
b.	Explain the effect of following parameters :	12			
	i) Friction ii) Strain rate iii) Hydrostatic pressure.				
c.	Explain the concepts of plane stress and plane strain.	4			
2	UNIT - II	6			
3 a.					
b.					
c.	c. A strip is given 20% reduction in thickness by rolling operation. If its final thickness is 5 mm and roll radius is 500 mm, determine the position of the neutral plane. Take $\mu = 0.2$				
	mm and roll radius is 500 mm, determine the position of the neutral plane. Take $\mu = 0.2$				
4 a.	and assume the plane strain condition for rolling. With neat sketches, explain cluster Rolling mill and Tandem mill.	8			
4 a. b.	Explain the defects in Rolling.	8 4			
о. с.	What load is required to forge a 300 mm large and 600 mm diameter cylindrical steel				
с.	billet to 80% of its original between flat platens under the following conditions?				
	i) At a room temperature with good lubrication having $\mu = 0.05$ and yield stress	8			
	530 MPa.	0			
	ii) At 900° C where the yield stress is 60 MPa but there is sticking problem.				
	UNIT - III				
5 a.	Derive an expression for drawing load by slab analysis.	12			
b.	An Aluminum alloy is hot extruded at 400° C at 50 mm/sec from 150mm diameter to 50 m diameter. The flow stress at this temperature is given by $\bar{\sigma} = 200(\dot{\xi})^{0.15}$ MPa If the billet is				

380 mm long and the extrusion is done through conical die with a semi cone angle of 60°. 8 Determine the force required for the operation.

Page No... 2

12

8

6

6

8

6

4

P15ME54

6 a. Explain the following Extrusion variables :

i)Alloy flow stress	ii) Working temperature
iii) Extrusion ratio	iv) Extrusion shape factor.

b. Calculate the drawing load required to obtain 30% reduction in area of a 10 mm diameter copper wire. The yield strength of copper in simple tension is 250 MPa. Die angle = 12° and coefficient of friction between working surfaces is 0.1. also calculate the power of electric motor if the drawing speed is 2 m/s.

UNIT - IV

- 7 a. With neat sketch, explain compound dies.
 - b. Explain LDR in drawing and parameters affecting on drawability.
 - c. It is required to punch a hole 10 mm diameter in a mild steel plate of 10 mm thick if the shear strength of the plate material is 600 N/mm² and compression strength of the punch materials is 200 N/mm². Determine whether the hole can be punched or not. If not suggest the alternative.
- 8 a. Explain the forming limit criterion.
 - b. Explain defects in deep drawing.
 - c. A 75 mm dia and 200 mm height cup is to be manufactured calculate the number of redraws assume 50%, 30% and 20% reduction for successive draws. Use conventional 10 sheet metal.

UNIT - V

9 a.	Define power metallurgy. Explain with neat sketches, steps involved in powder	8		
	metallurgy.	0		
b.	Explain with neat sketches sintering mechanism.	6		
c.	Explain the processing of Rubber and ceramics.	6		
10 a.	Explain the following methods of power production :			
	i) Atomisation ii) Crusting and milling.	8		
b.	Explain the finishing operations of power metallurgy parts.	6		
c.	Explain the processing of Rubber and Elastomers.	6		

* * *