Page No... 1 U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Third Semester, M. Tech. - Mechanical Engineering (MMDN) Semester End Examination; Dec - 2017/Jan - 2018 **Tribology and Bearing Design** Time: 3 hrs Max. Marks: 100 *Note*: *i*) *Answer FIVE full questions*, *selecting ONE full question from each unit*. ii) Use of Design Data Hand is permitted.

UNIT - I

l a.	State and explain laws of friction.	8
b.	What is wear? Explain how it is classified?	6
c.	Explain the mechanism of adhesive wear and abrasive wear.	6
2 a.	What are the types of lubricant? Briefly explain them.	6
b.	Explain the effects of temperature and pressure on viscosity of oil.	8
c.	A rectangular plate of 75 mm x 50 mm slides over a stationary plate and it is separated by oil	

of viscosity 50x10⁻³ Pa.sec at 35°C. The clearance between the plates is 0.25 mm and the tangential velocity of plate is 4 m/s. Calculate the following at this temperature;

i) Tangential drag force on moving plate

ii) Viscous shear stress

iii) Power loss in viscous friction.

UNIT - II

- 3 a. Two tanks A and B connected by a capillary tube and the system is filled with a liquid of viscosity 2 cP. The monometric pressure in tank A and B are 0.01 MPa and 0.04 MPa 4 respectively. The diameter of capillary tube is 0.635 m and its length is 2 m. Assuming laminar flow, determine rate of flow through capillary tube.
- Derive expressions for friction force and power loss in lightly loaded journal bearing. b.
- A lightly loaded bearing has the following specifications : c. Bearing length = 57 mm, Bearing diameter = 25 mm, radial clearance = 0.0508 mm, journal 10 speed = 25000 rpm, radial load 910 N and viscosity of lubricant 24×10^{-3} Pa.sec. Calculate; ii) Coefficient of friction. i) Power loss
- 4 a. Explain the mechanism of pressure development in an oil film.
- A rectangular plain slider bearing with fixed shoe with no end leakage has the following data: b. Bearing length = 90 mm; Width of shoe = 90 mm; Load on bearing = 7.8 kN14 Sliding velocity = 2.5 m/s; Inclination = -0.00035 radians; Viscosity of oil = 40 cP. Determine; i) Minimum film thickness iii) Coefficient of friction. ii) Power loss

6

6

6

P15MMDN31

Page No... 2

10

6

14

10

UNIT - III

5 a.	Obtain an expressi	on for friction force of a	an idealized full journal bearing.

- b. List the important practical considerations to be followed while designing bearing and discuss their influence on bearing performance.
- 6 a. Explain Sommerfeld number and its significance in bearing design.
- b. An idealized full journal has the following specifications :
 Diameter of journal 50 mm, length of bearing 65 mm, speed of journal 1200 rpm, radial clearance 0.025 mm, average viscosity 0.01132 Pa.sec and attitude 0.8. Determine;
 - i) Load carrying capacity
 - ii) Frictional force
 - iii) Coefficient of friction
 - iv) Power loss due to friction.

UNIT - IV

7 a.	Obtain an expression for load carrying capacity of hydrostatic step bearing.	10
b.	A hydrostatic step bearing has the following specifications :	
	Shaft dia = 130 mm, pocket dia = 55 mm, shaft speed = 1800 rpm, inlet pressure = 3.75 MPa,	
	external pressure = 0 (atm), desirable oil film thickness = 0.0875 mm and viscosity of	
	oil = 72.5 cP. Determine;	10
	i) Load the bearing can support	
	ii) Rate of oil flow through the bearing	
	iii) Power loss due to friction.	
8 a.	Explain different regions in EHL contacts.	10
b.	Derive Grubin's solution for EHL contact.	10
	UNIT - V	
9 a.	List the advantages of gas lubricated bearings and mention their applications due to these advantages.	
modified for the gas obeying polytropic relation?		
c.	Derive Reynolds equation for porous bearing.	10
10 a.	With a neat sketch, explain the principle of magnetic bearing.	10

b. List and discuss various benefits of Magnetic bearings.