P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
First Semester, B.E. - Semester End Examination; Dec - 2017/Jan - 2018 Basic Electronics
(Common to All Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Define Q-Point. Explain the importance of Q-point selection on the DC load line.
b. With the help of neat circuit diagram and waveform, derive an expression for the Ripple factor of HWR with capacitor filter.
c. In a full wave bridge rectifier, the transformer secondary voltage is $100 \sin \omega t$. The forward resistance of each diode is 25Ω with Load resistance 950Ω. Calculate;
i) DC output voltage
ii) Ripple factor
iii) Efficiency
iv) PIV across diodes.

2 a . With necessary circuit diagram and waveforms, explain the working principle of center tapped transformer FWR:
b. Design a Zenor voltage regulator for the following specification :

Output voltage $=5 \mathrm{~V}$, Load current $=20 \mathrm{~mA}$, Zenor voltage $=500 \mathrm{mV}$, Input voltage $=12 \pm 3 \mathrm{~V}$.
c. Write a note on Solar cell.

UNIT - II

3 a. Sketch and explain drain and transfer characteristics for an n-channel depletion type MOSFET.
b. Compare enhancement type n-channel MOSFET with p-channel using symbol and characteristics curve as a parameter.
c. Design a FET based phase shift oscillator with $g_{m}=5000 \mu \mathrm{sec}, r_{d}=40 \mathrm{k} \Omega, R=10 \mathrm{k} \Omega$ for oscillator operation at 1 kHz and R_{d} for $A>29$.

4 a . Sketch the transfer characteristics for an n-channel depletion type MOSFET with $I_{D S S}=10 \mathrm{~mA}$ and $\mathrm{V}_{\mathrm{P}}=-4 \mathrm{~V}$.
b. State and explain Barkhausen criteria.
c. With the suitable diagram, explain FET based phase-shift oscillator.

UNIT - III
5 a . Develop a gain equation from an AC equivalent circuit of Op-Amp in inverting mode.
b. Explain i) Gain-Bandwidth
ii) Slewrate
iii) Maximum Signal frequency.
c. Determine the output voltage of an Op-Amp for input voltages of $\mathrm{V}_{\mathrm{i} 1}=150 \mu \mathrm{~V}$ and $\mathrm{V}_{\mathrm{i} 2}=140 \mu \mathrm{~V}$. The amplifier has a differential gain of $\mathrm{A}_{\mathrm{d}}=4000$ and the value of CMRR is : $a=100$ and $b=10^{5}$

6 a . In the circuit shown below $R_{f}=470 \mathrm{k} \Omega, R_{1}=4.3 \mathrm{k} \Omega, R_{2}=33 \mathrm{k} \Omega$ and $R_{3}=33 \mathrm{k} \Omega$. Find the output voltage for an input of $80 \mu \mathrm{v}$.

UNIT - IV

7 a. Using Boolean identities prove the following :
i) $(A+B) \cdot(A+C)=A+B C$
ii) $A B C+A \bar{B} C+A B \bar{C}=A B+A C$
b. Perform the following :
i) $658.825_{(10)}=$ \qquad ii) $725.25_{(8)}=----------(10)=------------(2)$
iii) $0.0111_{(2)}=$ \qquad
c. Simplify and implement the following boolean expression using NOR gates only :
i) $Y=\overline{(A+\bar{B}+C)(\bar{A}+B+C)(A+B)}$
ii) $Y=\bar{A} B C+A \bar{B} C+A B C$.

8 a. Design and implement full adder using two half adder.
b. Subtract :
i) (11001-101101) $)_{2}$ using $2^{\text {s }}$ complement
ii) 48-23 using $2^{\text {s }}$ complement.
c. List and explain the characteristics of digital ICs.

UNIT - V

9 a. Define Amplitude Modulation. Derive an expression for total transmitted power of AM
wave.
b. With neat block diagram, explain superheterodyne receiver.

10 a . With a neat diagram, explain LVDT. Also mention advantage and disadvantage of LVDT.
b. Illustrate the working of monochrome cathode ray tube with neat diagram.

