Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. State and explain KCL and KVL as applied to DC circuits. Give the sign conventions used, and illustrate the same through a sample circuit example.
- b. Two identical coils of 1200 turns each are placed side by side such that 60% of flux of one coil links the other. A 10 A current in first coil sets flux of 0.12 mWbr. If the current in that coil changes from (+10A) to (-10A) in 20 ms. Find;
 - i) Self inductance (ii) Self emf induced for both coils.
- A portion of a network has a configuration as shown in Fig Q. 1(c). The voltage drop across 15 Ω c. is 30 V. Find the values of R and I.

2 a. Define clearly the following :

i) Faraday's Laws

iii) Fleming's rule

iv) Statistically and Dynamically induced emf.

b. For the network shown in Fig. Q 2(b) determine the direction and magnitude of current flow in the resistor 'R' of 10Ω .

ii) Lenz's law

- 3 a. Show that the voltage across a pure inductor and the current through it are displaced by 90°. Hence prove that the average power in a pure inductive circuit is zero. Draw the necessary wave shapes of current, voltage and power signals involved.
 - b. The series circuit of $R = 8 \Omega$, L = 20 mH, has an applied voltage, $v(t) = 283 \sin (300t + 90^\circ)$ V. Find the current drawn by the circuit.
 - c. Define RMS value of an AC quantity. Derive an expression for the same in terms of the maximum value.
- 4 a. For the waveform shown in Fig. Q 4 (a). Find;
 - i) Peak voltage

ii) Frequency

2002

Ø

iii) periodic Time

iv) Instantaneous values at t = 2 ms, 6 ms and 10 ms.

8

8

6

6

12

8

6

Contd...2

	P17EE15 Page No 2	
b.	Define: i) Form Factor and peak factor and find their values for a sinusoidally varying current. ii) Power factor and give its value for a Pure-R, Pure-L and Pure-C circuit.	6
c.	A resistor ' <i>R</i> ' is connected in series with the capadcitor ' <i>C</i> ' to a 50 Hz, 240 V supply. Find the values of <i>R</i> and <i>C</i> , so that ' <i>R</i> ' absorbs 300 W at 100 V.	6
UNIT - III		
5 a.	Obtain the relations for line voltages and line currents for delta connected load. Draw the phasor diagram. Also state the corresponding relations for the star connected load.	8
b.		6
	Calculate the line current and the power absorbed.	
с.		6
6 a.	With the help of a neat sketch, explain the construction and working of a single phase energy meter.	8
b.	Write a note on : i) Need for earthing	6
	ii) Electric shock and precautions needed to protect against the same.	0
c.	The power input to a 3-phase circuit was measured by two watt meters and readings are: (3400 W) and (-1200 W) respectively. Calculate the total power and PF of load. UNIT - IV	6
7 a.		8
b.		
	the product of armature current and flux.	6
c.	A 500 V shunt motor has 4 poles and wave wound armature, with 492 conductors. Flux per pole	
	is 50 mWbr, FL current is 20 A and $R_a = 0.1 \Omega$, $R_f = 250 \Omega$; Calculate the speed and torque developed.	6
8 a.		8
b.	Write briefly on : i) Necessity of a starter in DC motors	6
	ii) Applications of DC motor.	6
c.	A 3-phase, 16 pole alternator has Y-connected winding with 144 slots and 10 conductors per slot. Flux per pole is 30 mWbr and speed is = 375 RPM. Find the frequency, the phase and line emf. Assume pitch factor k_p = 0.1 and distribution factor k_d = 0.96. UNIT - V	6
9 a.	What are the main parts of transformer? What is the function and the main material of construction in each case?	6
b.	With respect of a transformer, give reasons for the following :	
	i) This is a small primary current even when on no load	<i>,</i>
	ii) The corelosses are constant for any load.	6
	iii) There is an inrush of current is primary circuit when the secondary is loaded.	
c.	Define power efficiency and regulation of a transformer. The maximum efficiency at FL and upf	
	of a single phase, 25 kVA, 500/1000 V, 50 Hz, transformer is 98%. Determine the efficiency at :	8
	i) 75% load, 0.9 pf ii) 50% load, 0.8 pF.	
10 a.		6
_	why the induction motor cannot run at a synchronous speed?	
b.	Why is a startor needed for starting a 3-phase induction motor?	4
c.	Discuss on the application of squirrel cage and slipring induction motors.	4
d.	A 3-phase, 5 HP, 400 V, 50 Hz, induction motor is working at full load with 90% efficiency at a pF of 0.866 lag. Determine the power input and line current (Take 1 HP equal to 746 W).	6