U.S.N					

P.E.S. College of Engineering, Mandya – 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E. - Semester End Examination; Dec - 2017/Jan - 2018 Engineering Physics

Time: 3 hrs (Common to All Branches) Max. Marks: 100

Course Outcome

The Students will be able to:

- CO1: Understand the basic concepts and principles of Physics in describing the phenomena related to engineering field.
- CO2: Explain the properties of various materials like metals, dielectrics, semiconductors, superconductors, nanomaterials applicable to engineering field.
- CO3: Apply the knowledge of Physics allied with the field of engineering applications.
- CO4: Formulate the expressions for the concepts of Physics pertaining to engineering field.
- CO5: Analyze by solving the problems in Physics for better understanding of engineering concepts.

Note: Answer FIVE full questions, selecting ONE full question from each Unit

Physical constants: Electron mass, $m = 9.11x10^{-31}$ kg, Electron charge, $e = 1.602x10^{-19}$ C; Velocity of light, $c = 3x10^8$ ms⁻¹; Planck's constant, $h = 6.626x10^{-34}$ Js; Boltzmann constant, $K = 1.38x10^{-23}$ JK⁻¹; Avogadro number, $N = 6.025x10^{-23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85x10^{-12}$ Fm⁻¹.

Q. No.	UNIT - I	Marks	CO	BL	PO
1 a)	Obtain an expression for Poisson's ratio in terms of Young's modulus, Bulk modulus and Rigidity modulus of the material.	8	CO3	L3	PO1
b)	(i) Define dipole moment.		CO1,	L1,	PO1
	(ii) Derive Clausius-Mossotti relation for a dielectric material.	6	CO4	L3	101
c)	(i) State Hook's law.	1	CO1,	L1,	PO1
	(ii) Explain stress-strain diagram.	4 CO2 L		L2	roi
2 a)	Explain four types of dielectric polarization mechanisms.	8	CO2	L2	PO1
b)	Derive an expression for Young's modulus (q) by uniform bending method.	7	CO4	L3	PO1
c)	(i) What are dielectric materials?(ii) Calculate the polarisability of a dielectric material of dielectric constant 16 in presence of an electric field of 1000 V/m.	5	CO1, CO5	L1, L3	PO1, PO2
	UNIT - II				
3 a)	(i) What is ultraviolet catastrophe?	2	CO1,	L1,	
	(ii) Discuss in brief Wien's law and Rayleigh-Jeans laws to explain blackbody radiation spectrum.	6	CO2	L1, L2	PO1
b)	(i) State and explain Heisenberg's uncertainty principle.	2	CO1,	L1,	DO1
	(ii) Prove that the electron doesn't exist inside the nucleus of an atom.	5	CO4	L3	PO1
c)	Calculate the de-Broglie wavelength associated with an electron of a kinetic energy 2000 eV. Also find its momentum.	5	CO5	L3	PO2
4 a)	Explain the physical significance of a wave function and mention its properties.	8	CO2	L2	PO1
b)	(i) Define group velocity?(ii) Derive the relation between group velocity and particle velocity.		CO1,	L1, L3	PO1
			CO4		
c)	Find the energy of an electron (eV) in a ground state when it is trapped in an infinite potential well of width 1.2 Å.	5	CO5	L3	PO2

Q. No.	UNIT - III	Marks	CO	BL	PO
5 a)	Derive an expression for intrinsic carrier concentration of an intrinsic semiconductor in terms of energy gap.	8	CO4	L3	PO1
b)	Describe how quantum free electron theory has been successful in overcoming the failures of classical free electron theory.	7	CO2	L2	PO1
c)	Distinguish between conductors, insulators and semiconductors on the basis of band theory of solids.	5	CO2	L2	PO1
6 a)	(i) Define density of states.	1	CO1,	L1,	PO1
	(ii) Obtain an expression for density of states in solids.			L3	101
b)	(i) Define Fermi energy and Energy gap.	2	CO1,	T 1	
	(ii) Show that $E_F = \left(\frac{E_C + E_V}{2}\right)$	5	CO1,	L1, L3	PO1
c)	Calculate the probability of an electron occupying an energy level 0.05 eV above the Fermi level at 300 K and 500 K in a material.	5	CO5	L3	PO2
	UNIT - IV				
7 a)	Write a note on: i) Critical temperature ii) Critical magnetic field	0	CO1	1.2	DO 1
	iii) Critical current iv) Isotopic Effect.	8	CO1	L2	PO1
b)	Discuss the variation of physical properties from bulk to thin film and thin film to nanomaterials.	7	CO2	L2	PO1
c)	Calculate the critical current for a wire of lead having a diameter of 3 mm at 5 K. The critical temperature for lead is 8 K and critical field is 5 x 10^4 Am ⁻¹ at 0 K.	5	CO5	L3	PO2
8 a)	(i) What are nanomaterials?	2	CO1,	L1,	PO1
	(ii) Write important applications of nanomaterials.	6	CO3	L2	101
b)	Describe the experiment to prove that a superconductor is a perfect diamagnet.	7	CO2	L2	PO1
c)	Write a brief note on: (i) Length scales and (ii) Mesoscopic state.	5	CO1	L2	PO1
	UNIT - V				
9 a)	(i) What is LASER?	1	CO1,	L1,	DO 1
	(ii) Explain briefly the term Laser cavity.	4	CO2	L2	PO1
b)	Derive the expression for numerical aperture of an optical fiber.	5	CO4	L3	PO1
c)	Explain how the elastic constants in solid can be determined using ultrasonics.	5	CO2	L2	PO1
d)	(i) What is Echelon effect?	2	CO1	- 1	DO1
· ·	(ii) A cinema theatre has a volume of 7500 m ³ . What should be the total absorption in the theatre if reverberation time of 1.5 s is to be maintained?	3	CO1, CO5	L1, L3	PO1, PO2
10 a)	With a neat diagram, discuss briefly the working of Semiconductor diode laser.	5	CO2	L2	PO1
b)	An optical fiber has clad of refractive index 1.5 and numerical aperture 0.39. Find the refractive index of the core and the acceptance angle.	5	CO5	L3	PO2
c)	(i) What are ultrasonics waves?				
	(ii) Find the depth of a submarine if ultrasonic pulse reflected from the submarine	2	CO1,	L1,	PO1,
	is received in $0.33~\text{s}$ after sending out the ultrasonic waves. Given that the velocity of ultrasonics in sea water is $1440~\text{m/s}$.	3	CO5	L3	PO2
d)	(i) Define reverberation and reverberation time.	2	CO1,	L1,	PO1
	(ii) Discuss Sabine's formula.	3	CO2	L2	PUI