P08ME63 Page No... 1

U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E. - Mechanical Engineering Semester End Examination; June - 2017 **Heat and Mass Transfer**

Time: 3 hrs Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I 1 a. Explain the three types of boundary conditions. 6 b. Derive a general heat conduction equation in rectangular coordinate system. 8 c. A plain wall of thickness 'L' and constant thermal properties is initially at a uniform temperature 'T_i'. Suddenly the surface at x = L is subjected to heating by hot gases at T_{∞} with 6 heat transfer coefficient 'h'. The other surface at x = 0 is kept insulated. Write the mathematical formulation for 1-D, transient temperatures distribution in the wall. 2 a. Derive an expression for critical thickness of insulation of a cylinder. 6 b. Define efficiency and effectiveness of fins. 4 c. An exterior wall of a house may be approximated by a 0.1 m layer of common brick $(k = 0.7 \text{ W/m}^{\circ}\text{C})$ followed by a 0.04 m layer of gupsum plaster $(k = 0.48 \text{ W/m}^{\circ}\text{C})$, what thickness of glass wool insulation (k=0.065 W/m°C) should be added to reduce the heat loss through the wall by 80 percent? 10 UNIT – II 3 a. Derive an expression for temperature distribution through a plane wall with uniform heat generation when both the surface have the same temperature and also find the maximum 10 temperatures. b. An electric current of 34,000 A flows along a flat steel plate 12.5 mm thick and 100 mm wide. The temp at one surface is 82° C and other is 95° C. Find the temp distribution and the value 10 and position of maximum temperature. Take $\rho = 12 \times 10^{-8} \,\Omega/m$ and $K = 52.4 \,W/m^{\circ}K$. 4 a. Derive an expression of temperatures distribution in lumped parameter analysis. 10 b. Steel ball bearing (K = 50 W/m°K, $\propto = 1.3 \times 10^{-5}$ m²/s) having dia of 40 mm, initially at a temperature of 650° C and suddenly quenched in a oil bath at 55° C. If the heat transfers coefficient is 300 W/m²K. 10 (i) Time taken for bearing to reach the temp at 200°C Determine; (ii) Instantaneous heat transfer when bearing at 200°C

(iii) Total heat transfer during this time period.

Contd 2...

P08ME63 Page No... 2

UNIT - III

5 a.	a. With reference to fluid flow over a flat plate, discuss the concept of velocity and thermal								
	boundary layer, with necessary sketches.								
b.	A vertical pipe 15 cm outer dia, 1m long, has a surface tempt of 90°C.								
	(i) If the surrounding air is at 30° C. What is the rate of heat loss by free convection per meter length of pipe?	10							
	(ii) If the pipe is inclined to vertical at an able of 30°, what is the heat loss/meter length?								
6 a.	6 a. With the help of dimensional analysis derive relation for the Reynolds number, Prandtal								
	number and Nusselt number.	10							
b.	Air at -20°C, 30 m/s, flows over a sphere of dia 25 mm, which is maintained at 80°C.	10							
	Calculate the heat loss from sphere.	10							
	UNIT - IV								
7 a.	Explain briefly the following laws:								
	(i) Stefan Boltzmann law (ii) Kirchhoff's law (iii) Planck's law	10							
	(iv) Wien's displacement law (v) Lambert's Cosine law.								
b.	Two large parallel plates are at 1000° K and 800° K. Determine the heat exchange per unit								
	area, when (i) the surface are black, (ii) the hot surface has an emissivity of 0.9 and cold	10							
	surface has a emissivity of 0.6, iii) A large plate of emissivity of 0.1 is inserted between them.								
8 a.	a. Explain the concept of black body.								
b.	b. Prove that Emissive power of a black body in a hemispherical enclosure is π times the								
	intensity of radiation.	8							
c.	The temperature of a black surface 0.2 m ² in area is 540°C. Calculate								
	(i) The total rate of energy emission (ii) The intensity of normal radiation	8							
	(iii) The wavelength of maximum monochromatic emissive power.								
	$\mathbf{UNIT} - \mathbf{V}$								
9 a.	Derive an expression for LMTD of parallel flow heat exchanger.	10							
b.	Oil at 100° C ($C_p = 3.6 \text{ kJ/kgK}$) flows at a rate of 30,000 kg/hr and enters a parallel flow heat								
	exchanger cooling water ($C_p = 4.2 \text{ kJ/kgK}$) enters at 10° C at the rate of 50,000 kg/hr. The heat	10							
	transfer area is 10 m^2 and $u = 1000 \text{ W/m}^2\text{K}$. Calculate outlet temp of oil and water.								
10 a.	With a neat sketch, explain the regimes of pool boiling.								
b.	State and explain Fick's law of diffusion.	4							
c.	Dry saturated steam at atmospheric pressure condenses on a vertical tube of dia 5 cm and								
	length 1.5 m. If the surface is maintained at 80°C, determine the heat transfer rate and the	8							
	mass of steam condensed per hour.								