PO	8ME82 Page No 1							
	U.S.N							
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Eighth Semester, B.E Mechanical Engineering Semester End Examination; June - 2017 Operations Research								
	ne: 3 hrs Max. Marks: 100 te: Answer FIVE full questions, selecting ONE full question from each unit.							
110	UNIT - I							
1 a.	Define OR. List and explain various phases of OR.	8						
b.	Apply graphical method to solve the following problem :							
	$Minimize \ Z = 20x_1 + 10x_2$							
	Subject to $x_1 + 2x_2 \le 40$							
	$3x_1 + x_2 \ge 30$							
	$4x_1 + 3x_2 \ge 60, x_1, x_2 \ge 0.$	12						
2 a.	Describe the characteristics of OR.	8						
b.	Employ graphical method to solve the following problem :							
	Maximize $Z = 2x_1 + x_2$							
	Subject to $x_1 + 2x_2 \le 10$							
	$x_1 + x_2 \le 6$							
	$x_1 - x_2 \le 2$							
	$x_1 - 2x_2 \le 1, x_1, x_2, x_3 \ge 0.$	12						
	UNIT - II							
3.	Solve the following LPP using two-phase method :							
	$Maximize Z = 5x_1 - 4x_2 + 3x_3$							
	Subject to $2x_1 + x_2 - 6x_3 = 20$	20						
	$6x_1 + 5x_2 + 10x_3 \le 76$							
	$8x_1 - 3x_2 + 6x_3 \le 0$							
	$x_1, x_2, x_3 \geq 0.$							
4.	Solve the following LPP using Big M method :							
	$Maximize \ Z = 2x_1 + 3x_2 + 4x_3$							
	Subject to $3x_1 + x_2 + 4x_3 \le 600$	20						
	$2x_1 + 4x_2 + 2x_3 \ge 480$							
	$2x_1 + 3x_2 + 3x_3 = 540$							
	$x_1, x_2, x_3 \ge 0.$							

P08ME82

UNIT - III

5. Calculate the basic feasible solution of the following transportation problem by N-W corner rule and optimize the same.

	Destinations					Supply
Sources	1	2	3	4	5	
А	4	3	1	2	6	80
В	5	2	3	4	5	60
C	3	5	6	3	2	40
D	2	4	4	5	3	20
Demand	60	60	30	40	10	

6. Solve the following transportation problem to find optimal solutions.

	D ₁	D ₂	D ₃	D_4	D ₅	Available
O ₁	68	35	4	74	15	18
O ₂	52	88	91	3	8	17
O ₃	91	60	75	45	60	19
O ₄	52	53	24	7	82	13
O ₅	51	18	82	13	7	15
Required	16	18	20	14	14	

UNIT - IV

- 7 a. Why assignment problems are inherently degenerates?
 - b. Solve the following assignment problem :

	Ι	II	III	IV	V
1	11	17	8	16	20
2	9	7	12	6	15
3	13	16	15	12	16
4	21	24	17	28	26
5	14	10	12	11	13

8. An airline that operates 7 days a week has the time table shown below. Crew must have minimum layover of 5 hours between flights. Obtain the pairing of flights that result in smaller layover.

	Delhi – Jaipur			Jaipur – Delhi		
Flight no.	Departure	Arrival	Flight no.	Departure	Arrival	
1	7.00 a.m	8.00 a.m	101	8.00 a.m	9.15 a.m	20
2	8.00 a.m	9.00 a.m	102	8.30 a.m	9.45 a.m	
3	1.30 p.m	2.30 p.m	103	12 noon	1.15 p.m	
4	6.30 p.m	7.30 p.m	104	5.30 p.m	6.45 p.m	

20

20

4

16

UNIT - V

- 9 a. Explain the elements of a queuing system.
 - b. A self service store employs one cashier at its store. Nine customers arrive on an average every
 5 minutes, while the cashier can serve 10 customers in 5 minutes. Assuming Poisson distribution for arrival rate and exponential distribution for service time, find :
 - i) Average number of customers in the system
 - ii) Average number of customers in the queue
 - iii) Average time customer spends in the system
 - iv) Average time consumer waits before being served.
- 10 a. Explain the following terms :

Pay off matrix, optimal strategy, saddle point, zero sum game.

b. Solve the following 2×5 game by graphical method :

Player B

		1	2	3	4	5
Player A	1	-5	5	0	-1	8
	2	8	-4	-1	6	-5

* * * *

10

8

12