

Time: 3 hrs

Max. Marks: 100

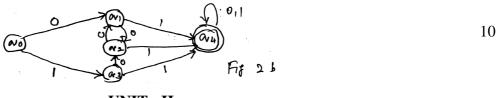
10

Page No... 1

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Design a DFA for the following :


- i) To accept string of 0's and 1's that either starts with 01 or ends with 01
- ii) To accept the language $L = \{W(ab+ba) | W \in \{a, b\}^*\}$.
- b. Convert the following NFA into DFA.

2 a. Convert \in -NFA into DFA.

 $\frac{10}{10}$

b. Minimize the below given DFA.

UNIT - II

3 a.	Let R be a regular expressio	n, then prove that there exists a finite automata A.	6
------	------------------------------	--	---

- b. Write the regular expressions for the following :
 - i) Strings of a's and b's of even length ii) Strings of a's and b's with no substring aa.
- c. Obtain a regular expression using Kleen's algorithm for the below given finite automata.

4 a. Obtain the regular expression for the following DFA using state elimination method.

- b. Explain the various applications of regular expressions.
- c. State and explain Kleen's theorem to regular expressions for finite automata.

4 10

4

Contd...2

5

5

10

4

UNIT - III

5 a.	Define CFG,	, write the CFG	for the followi	ng languages :
------	-------------	-----------------	-----------------	----------------

i)
$$L = \{WW^R | W \in \{a, b\}^* \text{ and } W^R \text{ is the reverse of } W\}$$

ii) $L = \{0^{n+2}1^n \mid n \ge 1\}.$

b. Prove that the following grammar is ambiguous using the string "ibtibtaea"

 $S \rightarrow iCtS | iCtSeS | a$

 $C \rightarrow b$

c. Define left most derivation and right most derivation and find the same for the following grammar :

 $E \rightarrow E + E \mid E - E \mid E^*E \mid E/E \mid (E)$

 $E \rightarrow a | b | c$

Leftmost for the string a+b+c

Rightmost for the string (a+b)*c.

6. a Remove all useless productions, unit productions and \in productions from the grammar :

$$S \to ABC \mid BaB \qquad A \to aA \mid BaC \mid aaa \qquad B \to aBa \mid a \mid D$$

$$C \to CA \mid AC \qquad D \to \in$$
10

- b. If L_1 and L_2 are CFL then prove that they are closed under union and concatenation operations. 6
- c. Convert the following CFG to CNF :

 $S \rightarrow ABa \quad A \rightarrow aab \quad B \rightarrow Ac$

UNIT - IV

7 a.	Design a PDA to accept a string of balanced parenthesis and also show the string acceptance for the string $W = [()]$.	12
b.	Construct a PDA for the grammar :	
	$A \rightarrow aBB \mid a$	8
	$S \rightarrow aABB \mid aAA B \rightarrow bBB \mid A$	0
	$C \rightarrow a$	
8 a.	Construct a PDA for the language $L = \{WW^R W \in (a+b)^*\}$ and show the string acceptance for the string abbbba.	12
b.	Convert the following grammar into PDA :	
	S→aSa aa	8
	$S \rightarrow bSb \mid bb$ and also show the string acceptance.	

UNIT - V

9 a.	Design a Turing machine to accept the language having string of palindromes over $\{0,1\}$.	10	
b.	. Design a Turing machine to accept the language consists of equal number 0's and 1's.		
10a.	. Explain ID, acceptance of language with respect to Turing machine with an example.		
b.	. Explain the following :		
	i) Post correspondence problem ii) Undecidable problems iii) Multi track Turing machine.	12	