P13EC63					Page No 1				
A compare weak agent	U.S.N								
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Electronics and Communication Engineering Semester End Examination; June - 2017 Microwave Devices and Integrated Circuits									
Time: 3 hrs						Mark	cs: 1	00	
<i>Note:</i> Answer <i>FIVE</i> full questions, selecting	g ONE full que UNIT - I	estion fr	om ead	ch uni	et.				
1 a. A telephone line has $R = 60 \Omega/km$, L =	= 2.2 mH/km,	C = 0.0	005 μF	/km a	and G	$\dot{t} = 0.0$	15 o /1	km.	
Determine Z_0 , α , β and phase velocity at	t 1 kHz.								
 b. Define standing waves and derive equa waves. Also sketch the waveform. 	tion for ampli	tude, pl	hase, V	v _{max} a	nd V ₁	_{min} of	stand	ing	
c. Derive the equation for the following at	microwave fre	equency	:						
i) Phase velocity ii) Cha	racteristic imp	bedance							
2 a. Derive an equation for the line inductan	ce in terms of	expone	ential a	nd hy	perbo	olic fu	nctio	n at	
any point of line from the sending end.									
b. A generator of 1V, 1 kHz supplier power		•				-		r of	
the line are R = 10.4 Ω /km. L = 0.00367	H/km, G = 0.5	8x10 ⁻⁶	७km. (Calcul	late Z	α_0, α ar	ıdβ.		
c. A load impedance $Z_R = 60$ -j80 Ω is req	juired to be ma	atched	to a 50	Ω co	oaxial	line,	by us	ing	
short circuit stub of length L located	at a distance	'd' from	m the	load.	The	wavel	ength	of	
operation is 1 meter using smith chart. F	'ind'd', 'L'.								
	UNIT - II								
	a. Explain the operation of Faraday rotation isolator with neat figure.								
b. An air filled rectangular wave guide of i	inside dimensi	on $a = '$	7 cm a	nd b =	= 3.5	cm op	erate	s in	
the dominant TE_{10} mode.									
i) Find cutoff frequency		_							
ii) Determine phase velocity of the wave	•	-	uency	of 3.5	GHz	5			
iii) Determine the guide wavelength at the	-	ency.							
c. Briefly explain the following microwave									
	Rectangular ca	•		•					
4 a. A Two cavity Klystron amplifier has the	• •								
$V_0 = 1000 V, R_0 = 40 k\Omega, I_0 = 25 mA, f$			=4 cm	n, R _{SG}	= 30	kΩ			
i) Find the input gap voltage to give may	U								
ii) Find the voltage gain neglecting the	•		utput C	Cavity					
iii) Efficiency of the amplifier neglecting	g beam loading	g.							

P1	3EC63 Page No 2	
b.	Derive an expression for output power of four cavity Klystron.	10
c.	What are the major differences between TWT and Klystron?	4
	UNIT - III	
5 a.	What are the common properties of S, Z and Y matrices and list the advantages of S over Z and Y.	6
b.	Explain the phase shifting property for reciprocal network.	4
c.	Two transmission lines of characteristic impedance Z_1 and Z_2 joined at plane PP ¹ -supress S-parameters in terms of impedances.	10
6 a.	With a neat diagram, explain the operation of precision type variable alternator and write S- matrix for the same.	10
b.	A 20 MW signal is fed into one of collinear port 1 of a lossless H plane T-junction. Calculate the power delivered through each port when other ports are terminal in matched load.	6
c.	List the applications of magic tees.	4
	UNIT - IV	
7 a.	Explain with relevant figures the fundamental concepts of RWH theory.	6
b.	Discuss the structure and working of READ diode with neat figure.	7
c.	Derive an expression for the power output and efficiency of IMPATT diode.	7
8 a.	With the neat diagram explain the principle of operation of TRAPATT diode. List its advantages.	10
b.	Explain with a neat diagram the working of tunnel diode and varactor diode.	10
	UNIT - V	
9 a.	Explain the structure of coplanar strip line and shielded strip line. Write equation for its characteristic impedance.	10
b.	A lossless parallel strip line has a conducting strip width w. The substrate dielectric	
	separating the two conducting strips has a dielectric constant $\in_r d$ of 6 and a thickness of 4 mm. Calculate;	
	i) Width of conducting strip in order to have a characteristic impedance of 50 Ω	10
	ii) The strip line capacitance	
	iii) Strip line inductance	
	iv) The phase velocity of the wave is parallel strip line.	
10 a.	Explain different techniques involved in fabrication of monolithic microwave integrated circuits.	10
b.	Explain the thin film manufacturing technology and accomplishment of circuit definition by, i) Plate through technique ii) Etch balk technique.	10