

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; June - 2017

Network Analysis - II
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\mathbf{O N E}$ full question from each unit.

UNIT - I

1 a. What do you mean by initial conditions in electrical networks and what is the purpose of determining them?
b. In the given network of Fig.1, the switch is closed at $t=0$, with zero current in inductor. Find;
$\mathrm{i}, \frac{d i}{d t}$ and $\frac{d^{2} i}{d t^{2}}$ at $t=0+$.

2 a. In the network shown in Fig. 3, at $t=0$, the switch is opened. Calculate $v, d v / d t, d^{2} v / d t^{2}$ at $t=0+$.

Fig. 3
b. In the network shown in Fig 4. a steady state is reached with the switch ' k ' open. At $t=0$, the switch is closed. For the elemental values given, determine the value of $\mathrm{V}_{\mathrm{a}}(0-)$ and $\mathrm{V}_{\mathrm{a}}(0+)$ and $\mathrm{V}_{\mathrm{b}}(0+)$.

3 a. Clearly discuss the following functions :
(i) Step function
(ii) Ramp function
(iii) Gate function.
b. Sketch the waveforms for the given functions:
(i) $\mathrm{tu}(\mathrm{t}-\mathrm{T})$
(ii) $(\mathrm{t}-\mathrm{T}) \mathrm{u}(\mathrm{t})$
(iii) $\operatorname{Sin}(\omega t-T / 4) u(t-T / 4)$.
c. Obtain the Laplace transform of saw tooth waveform shown in Fig. (5)
 $\frac{F_{1}(S)}{1-e^{-T S}}=F(S)$ where $F_{1}(\mathrm{~S})=\mathrm{L}\left\{f_{1}(t)\right\}$.
b. Find the Laplace transform of a pair of rectangular pulses each of duration ' T ' Sec shown in Fig. (6).

5 a. At $t=0$, unit pulse voltage of unit width is applied to series RL circuit as shown in Fig. (7), obtain an expression for $i(t), v(t)=u(t)-u(t-1)$.

P13EE45

b. For the network shown in Fig. (8). Find $i(t)$ when the switch is closed at $t=0$ with zero initial conditions.

6. a State and prove Convolution theorem.
b. Calculate the initial value of the current using the initial value theorem given that the Laplace transformation of current is $I(S)=\frac{2 S+5}{(S+1)(S+2)}$, find $i(0+)$. Also verify $i(0+)$ from time response. Also calculate $i(t)$ at $t=2 \mathrm{sec}$.

UNIT - IV

7 a. Determine the driving point impedance function of the network shown in Fig. (9)
b. Obtain the pole-zero plot of the following functions :
(i) $F(S)=\frac{S(S+2)}{S^{2}+2 S+2}$
(ii) $F(S)=\frac{S(S+2)}{(S+1)(S+3)}$
c. Plot the following on the pole-zero plot and determine the time response of each of the individual poles, assuming the response is current (i) $S_{1}=0$ (ii) $S_{2}=-1$ (iii) $S_{3}=-2$.

8 a. Obtain the expression of Z parameters in terms of $A B C D$ parameters.
b. Find the Y-parameters for the network shown in Fig. (10)

9 a. Test whether the polynomial $P(S)=2 S^{4}+5 S^{3}+6 S^{2}+3 S+1$ is Hurwitz or not.
b. Just whether the function $F(S)=\frac{S(S+3)(S+5)}{(S+1)(S+4)}$ is PR function or not.

10 a. Realize the Foster I \& II form of the following impedance function : $F(S)=\frac{4\left(S^{2}+1\right)\left(S^{2}+9\right)}{S\left(S^{2}+4\right)}$
b. Realize the caver II and I form of the following Impedance function : $Z(S)=\frac{10 s^{4}+12 s^{2}+1}{2 s^{3}+2 s}$

