13EE62 Page No 1					
U.S.N					
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, Electrical and Electronics Engineering Semester End Examination; June - 2017 Switchgear and Protection					
<i>Time: 3 hrs</i> Note : Answer FIVE full questions, selecting ONE full questio	from each 1		c. Mari	ks: 100	
UNIT - I	ji olit edelt t				
1 a. With a neat sketch, describe the construction and operation	the HRC fu	ise.			7
b. Explain why arc formation is desirable part of the prod	ss of intern	ruptin	g curre	ent befor	re 4
interruption but undesirable after interruption at current zero					4
c. The short circuit current of 3 phase 132 kV system is 8000	A. The curr	ent cł	nopping	occurs a	at
2.5% of the peak value of the current. Calculate the prospect appear across the contacts of the circuit breaker. The value 100 pF.			-		6
d. Define the following terms for fuses:					
(i) Cut off (ii) Pre-arcing frame (iii) Arcin	time				3
2 a. Explain the considerations in selecting a fuse for,					<i>.</i>
(i) Transformer protection (ii) Motor protection					6
b. What is resistance switching? Derive expression for critica	resistance	in ter	ms of i	nductanc	e 7
and capacitance, which gives no transient oscillation.	•,	1	1 (
c. For a 3 phase, 132 kV, 50 Hz system, the reactance and c	•	-	ie locat	ion of th	e
circuit breaker are 3 Ω and 0.015 μ F, respectively. Calculate	ne followin	g :			7
(i) Frequency of transient oscillations	of the sires	it hro	alzar		1
(ii) Frequency value of restricting voltage across the contac(iii) Maximum value of RRRV.	of the circu		akei		
(III) Maximum value of KKKV. UNIT - II					
3 a. With a neat sketch, explain the arc interruption pro	es in air-	hreak	circui	t breake	r
incorporating.		oreak	circui	i UICANC	7
b. With a neat sketch, explain the construction and operation o	minimum oi	il circ	uit brea	ker.	10
c. List the important properties of SF_6 gas.					3
4 a. With a neat diagram and waveforms, explain the synthetic to	ting of circu	iit bre	aker.		10

b. With a neat diagram, explain the construction and operation of puffer type SF_6 circuit breaker. 10

Contd...2

P13EE62

UNIT - III

5 a.	Discuss the role of back-up protection, what are the methods of giving back-up protection.				
b.	Define and explain the following :				
	(i) Sensitivity of a relay (ii) Relay time, fault clearing time	9			
	(iii) Stability of Protective system.				
c.	Determine time of operation of an IDMT relay of rating 5A and having current setting of 125%				
	and TMS = 0.5. The relay is connected through a CT of $400/5$ A. The fault current is 4000 A.	5			
	The operating time for PSM of 8 is 3.2 s at TMS = 1.				
6 a.	Explain the impedance relay characteristics on the R-X diagram. Discuss the range setting of				
	three impedance relays placed at a particular location. Discuss why the I zone unit is not set for	10			
	the protection of the 100% of the line.				
b.	Explain the operating characteristics of a percentage differential relay. Also explain the	10			
	problems associated with Differential protection.	10			
UNIT - IV					
7 a.	Explain the Merz-price protection system for generators.	10			
b.	An 11 kV, 100 MVA generators is grounded through a resistance of 6 Ω . The CTs have a ratio				
	of 1000/5. The relay is set to operate when there is an out of balance current of 1 A. What	6			
	percentage of generator winding will be protected by the percentage differential scheme of	0			
	protection?				
c.	List the abnormal operating condition for which generator needs to be protected.	4			
8 a.	Explain the protection of generator against loss of excitation.	10			
b.	A 11 kV, 100 MVA, generator is provided with differential scheme of protection the				
	percentage of the generator winding to be protected against phase to ground fault is 80% . The	6			
	relay is set to operate when there is 15% out of balance current. Determine the value of				
	resistance to be placed in the neutral to ground connection.				
c.	Briefly explain the protection scheme of generator against over speeding.	4			
UNIT - V					
9 a.	With a neat circuit diagram, explain the Merz-price differential protection scheme for protection	14			
	of 3 phases Δ - X connected transformer. Also explain the principle of Harmonic restraint.	11			
b.	A star-delta, 11 kV/6.6 kV transformer is protected by means of differential protection system				
	The 6.6 kV delta connected side has CT ratio of 600/5. Calculate CT ratio of HV side.	6			
10 a.	What are the abnormal conditions in induction motor and explain the protection against phase	12			
	reversal and overload?	14			
b.	Explain the protection system for Induction motors against phase faults and ground faults.	8			