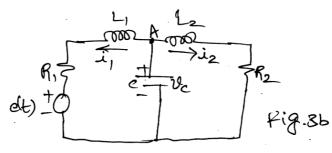
P 1	13EE63 Page No 1	
Frequence	U.S.N	
X	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Electrical and Electronics Engineering Semester End Examination; June - 2017 Modern Control Theory	
T	ime: 3 hrs Max. Marks: 100	
Note : Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I		
1. a	Based on control actions initiated, how the automatic controllers are classified and write the 5	F
	controller configurations in control system with the block diagram.	5
b.	Write the transfer function, the operational amplifier circuit realization of the PD controller for	5
	(i) Two Op-Amp circuit (ii) Three Op-Amp circuit.	5
c.	Explain the draw backs of using the P-controller alone in a second order system and how the	10
	performance is improved by using PI and PD controllers.	
2 a.	What is compensator? Explain the need of compensators in a system and draw the block	6
	diagrams of different types of compensation.	6
b.	Explain the effects of LEAD and LAG compensators on the system performance.	6
c.	With the help of graphs, explain the improvements in the responses (step and ramp) for the	0
	systems without and with compensators (LEAD, LAG and LAG-LEAD).	8


UNIT - II

3 a. For the system :

$$\begin{bmatrix} \dot{X}_1 \\ \dot{X}_2 \end{bmatrix} = \begin{bmatrix} 0 & +3 \\ -2 & 5 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} + \begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \text{ And } \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix};$$
5

Obtain the transfer Matrix.

b. Determine the state model for the electrical network shown in the Fig 3b. Choosing i_1 , i_2 and v_c are variables and the voltage drop across R_1 and R_2 as output variables.

- c. A system defined by $\overset{(n)}{y} + \overset{(n-1)}{a_1} y + \dots + a_{n-1} \dot{y} + a_n y = b_0 \overset{(n)}{u} + b_1 \overset{(n-1)}{u} + \dots + b_{n-1} \dot{u} + b_n u$, where 'u' is the input and 'y' is the output. Express the above system equation in,
 - (i) controllable (ii) observable
 - (iii) Diagonal (iv) Jordan canonical forms.

7

8

P13EE63

Page No... 2

4

6

4

10

10

4 a. By using transformation matrix X = PZ, obtain the new state model for :

$$A = \begin{vmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -6 & -11 & -6 \end{vmatrix}; \quad B = \begin{vmatrix} 0 \\ 0 \\ 6 \end{vmatrix}; \quad C = \begin{bmatrix} 1 & 0 & 0 \end{bmatrix}$$
 10

- b. Under linear transformation, shows that the Eigen values are invariant.
- c. For the differential equation: $\ddot{y} + 9\ddot{y} + 26\dot{y} + 24y = 6u$ represent this in the canonical form.

UNIT - III

- 5 a. State the properties of state transition matrix.
 - b. A system has the following state equations $\dot{x}_1 = -2x_1 + u; \ x_2 = x_1 - x_2;$ Determine the homogeneous response to the initial conditions 8 $x_1(0) = 2 \text{ and } x_2(0) = 3.$ c. For the system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -2 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \end{bmatrix} u$; where u(t) is the unit step function occurring at t = 0, when $y = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Obtain the time response for the above system.
- 6. a Define: i) State controllability, ii) output controllability and iii) observability.Explain how they are tested by using two different methods.
 - b. Consider the system $\begin{bmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 3 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ The output is given by $y = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$;

(i) Show that the system is not completely observable

(ii) Show that the system is completely observable if the output is given by

$$\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}.$$

UNIT - IV

- 7 a. Explain how the stability and transient response of the system is to be improved by state feedback using pole placement technique.
 - b. For the system $\overset{\circ}{X} = AX + Bu$, where $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ -1 & -5 & -6 \end{bmatrix}$, $B = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}$: By using the control 10

law u=-kx. Determine the state feedback gain matrix 'K', with the desired closed loop poles at $S = -2 \pm j4$ and S = -10 (use Ackerman's formula).

Page No... 3

6

4

6

8

P13EE63

- 8 a. What is state observer? Explain the necessity of Full order observer by means of a block 10 diagram.
- b. For the system $\overset{\circ}{X} = AX$ and y = CX where

$$A = \begin{bmatrix} -1 & 1 \\ 1 & -2 \end{bmatrix}; \quad C = \begin{bmatrix} 1 & 0 \end{bmatrix} \text{ Design a full order state observer, with the desired observer poles} \qquad 10$$

at S = -5 and S = -5. (Use Ackermann's formula).

UNIT - V

- 9 a. What is an autonomous system and explain the concepts of :
 - (i) Stability of an equilibrium state in the sense of Liapunov
 - (ii) Asymptotic stability of an equilibrium state
 - (iii) Instability.
 - b. For a scalar function V(x) of a vector X, define,
 - (i) Positive definite (ii) Positive semi definite
 - (iii) Negative definite (iv) Negative semi definite
 - c. Determine the definiteness of the quadratic form :

$$V(X) = -4x_1^2 - 3x_2^2 - 2x_3^2 + 2x_1x_2 - 2x_2x_3 - 4x_1x_3$$
4

d. Determine the stability of the origin of the system $\overset{\circ}{X} = AX$ where $A = \begin{bmatrix} 0 & 1 \\ -1 & -1 \end{bmatrix}$.

Assume 'Q' to the Identity matrix, solve for the matrix 'P' in $A^T P + PA = Q$.

Write the Liapunov function.

- 10 a. Explain the Liapunov stability analysis of Linear time invariant systems.
 - b Determine the stability range for the gain K of the system shown in Fig. 10b. The state equation

* * * *