U.S.N					

P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi)

Eighth Semester, B.E. - Electrical and Electronics Engineering

Semester End Examination; June - 2017 HVDC Power Transmission

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

	UNIT - I				
1 a.	Compare HVAC and HVDC transmission based on the economics of power transmission.	6			
b.	Draw and explain the different types of HVDC links.	6			
c.	Illustrate the choice of voltage level for a fixed power transfer for both point to point and				
	back to back HVDC systems.	8			
2 a.	Compare HVAC and HVDC transmission based on voltage control and problems of AC				
	interconnection.	6			
b.	Draw and explain the different configuration for asynchronous interconnection of HVDC	6			
	systems.				
c.	Sketch schematic diagram of a typical HVDC converter station and briefly explain.	8			
	UNIT - II				
3 a.	What is Graetz circuit? Comment on the choice of best configuration.				
b.	Perform the analysis of Graetz circuit neglecting the overlap condition, derive the Average dc				
	output voltage with necessary voltage waveforms at $\alpha=0^{\circ}$ and 45° .	14			
4 a.	Discuss the turn-on and turn-off switching characteristics of Thyristor.				
b.	Draw the circuit and explain how two 3 φ one way circuit combined to form a six pulse	10			
	circuit?	10			
	UNIT - III				
5 a.	Derive and explain the following with reference to the converter performance:				
	(i) Valve Utilization Factor-VUF (ii) Transformer Utilization Factor-(TUF).	8			
b.	Compute VUF for the following converter configuration:				
	(i) $q = 2$, $r = 1$, $s = 3$ (ii) $q = 3$, $r = 2$, $s = 1$	6			
	Select the best configuration and justify.				
c.	What is overlap angle? Draw the equivalent circuit of a bridge converter.				
6 a.	Analyse the Gratez circuit with overlap condition. Obtain the expression of direct current I_d .	10			
b.	A 3 φ , 6 pulse rectifier is fed from a transformer with nominal rating of 220 kV/110 kV				
	(i) Determine the DC output voltage when $\alpha=20^\circ$ and $u=18^\circ$	10			
	(ii) If the direct current delivered by the rectifier is 2000 A, calculate the effective	10			
	commutating reactance, power factor and fundamental component of AC current.				

UNIT - IV

7 a.	Outline the desired features of HVDC power control.					
b.	With the help of schematic diagram, explain constant-current regulator for the control of					
	HVDC converter.					
8 a.	With the help of equivalent circu	it of dc transmission in steady state condition, explain the				
	basic means of HVDC power control.					
b.	Contrast the constant current and constant voltage method of HVDC power control.					
c.	Discuss the role of Tap-changer control in HVDC power control.					
		UNIT - V				
9 a.	. Discuss the procedure of control for fault clearing and reenergization of line.					
b.	. Explain the causes and consequences of uncharacteristic harmonics.					
c.	What are the means of reducing harmonics? Briefly explain.					
10 a.	. Discuss the following basic types-converter faults:					
	(i) Arc through (ii) Misfi	re (iii) Commutation failure.	10			
b.	Outline the important functions of	smoothing reactor.	3			
c.	. Find the inductance of the dc reactor required to prevent consequent commutation failures in					
	the inverter described below:					
	Number of bridges per pole	: 2				
	Rated voltage per bridge	: 200 kV				
	Rated current (I_{dn})	: 1.86 kA	7			
	I_{s2}	: 10.0 kA				
	Frequency	: 60 Hz				
	Normal extinction angle γ_{n}	: 16°				
	Min extinction angle γ_m	: 8°				

* * * *