
P13IS43			Page No 1							
	U.S.N									
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Information Science and Engineering Semester End Examination; June - 2017										
Finite Automata and Formal Languages										
Time: 3	hrs				M	lax.	Ma	rks:	100)

Note: Answer *FIVE* full questions selecting *ONE* full question from each unit. UNIT - I

- 1. a Construct a DFA to accept the following
 - i) Strings of 0's and 1's starting with at least two 0's ending with at least two1's
 - ii) Strings of a's and b's having even number a's and odd number of b's
 - b. Differentiate between NFA and DFA and explain the applications of Finite automata.
 - c. Convert the given NFA to DFA

2 a. Construct a DFA from the following epsilon NFA.

b. Design a DFA to accept the language

$$L = \left\{ W(ab + ba) \mid W \in \left\{ a, b \right\} \right\}$$

c. Find the minimized DFA for the following:

S	0	1
→A	В	А
В	А	С
С	D	В
*D	D	А
E	D	F
F	G	Е
G	F	G
Н	G	D

6

8

5

10

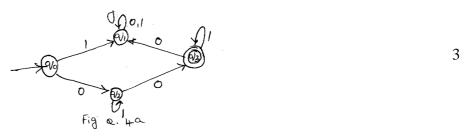
4

4

6

10

7


UNIT - II

3 a. Obtain the regular expression for the following languages

i) L= $\{a^n b^m : (m+n) \text{ is even}\}$ ii) L= $\{a^n b^m : n > 4 \text{ and } m \le 3\}$

b. Obtain the regular expression from the given DFA using Kleen's theorem

- c. Construct the automata for the regular expression (a+b) (ab+ba)*aa
- d. List and explain the applications of regular expressions.
- 4 a. Obtain the regular expression for the following DFA using state elimination method.

- b. State and prove pumping lemma for regular languages.
- Prove that the language с.

$$L=\{ a^{n!}/n \ge 0 \}$$

Is not regular?

UNIT - III

5 a. Write the CFG for the following languages

	i) L= $\{a^{i}b^{j}c^{k}: i+j=k, l, j \ge 0\}$	5
	ii) L= $\{a^{n}b^{m}c^{k}: n+2m = k, n, m, k \ge 0\}$	
b.	Obtain two leftmost & rightmost derivations for the string 'abababa' from the grammar	
	S→SbS a	5
c.	Write CFG for the language consist of strings of palindrome with the input symbols a and b.	5
	Where the length of the string may be even or odd.	5
d.	Show that the following grammar is ambiguous:	
	$S \to S + S S * S S - S a b c$	5
6. a	Remove all useless productions, unit productions and \in productions from the grammar	

$$S \rightarrow ABC | BaB \qquad A \rightarrow aA | BaC | aaa \qquad B \rightarrow aBa | a | D$$

$$S \to ABC | BaB \qquad A \to aA | BaC | aaa \qquad B \to aBa | a | D$$

$$C \to CA | AC \qquad D \to \in$$
10

b.	If L_1 and L_2 are CFL then P.T. they are closed under union and concatenation operations.	6				
c.	Convert the following CFG to CNF $S \rightarrow ABa$ $A \rightarrow aab$ $B \rightarrow AC$	4				
	UNIT - IV					
7 a.	Design a PDA to accept a string of balanced parenthesis and also show the string acceptation	10				
	for the string $W=[()]$.	12				
b.	Construct a PDA from the grammar :					
	$S \rightarrow aABB / aAA$					
	$A \rightarrow aBB / a$	8				
	$B \rightarrow bBB / A$	0				
	$C \rightarrow a$					
	S is a Start symbol					
8 a.	Construct a PDA for the language	10				
	$L = \{WW^R w \in (a+b)^*\}$ and show the string acceptance for the string abbbba.	12				
b.	Convert the following grammar into PDA					
	S→aSa/aa	8				
	S→bSb/bb	0				
	And also show the string acceptance.					
	UNIT-V					
9 a.	Design Turing machine to accept the language having string of palindromes over {a, b}.	10				
b.	Design a Turing machine to accept the language consists of equal number of 0's and 1's	10				
10 a.	Explain ID, acceptance of language with respect to Turing machine with an example.	8				
b.	Explain the following:					
	i) Post correspondence problem	12				

ii) Undecidable problems

P13IS43

iii) Multi track Turing machine.

* * * *