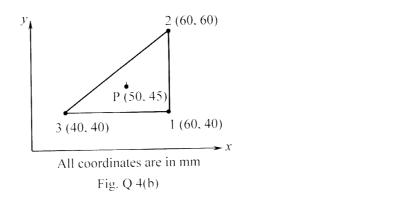

P13	ME64 Page No 1	
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E. – Mechanical Engineering Semester End Examination; June - 2017 Finite Element Methods Time: 3 hrs Max. Marks: 100		
Not		
ΝΟι	(ii) Answer missing data, if any may be suitably assumed.	
UNIT - I		
1 a.	Explain the following with suitable example:	
	(i) Boundary value problem and initial value problem	8
	(ii) Essential boundary conditions and non-essential conditions.	
b.	Define body force and traction force and give any two examples for each.	4
c.	With suitable example, explain the concept of plane stress and plane strain problems. Write	8
	stress-strain relations for each problem.	0
2 a.	Explain how node numbering scheme in the discritization process affects bandwidth of	4
	stiffness matrix.	4
b.	Solve the following system of simultaneous equations using general algorithms of gauss	
	elimination method.	
	$x_1 + x_2 + x_3 = 9$	10
	$x_1 - 2x_2 + 3x_3 = 8$	
	$2x_1 + x_2 - x_3 = 3$	
c.	Evaluate the integral using Gauss quadrature so that the result is exact.	
	$I = \int_{-1}^{1} (7 - 3x + x^2) dx$	6
UNIT - II		
3 a.	Briefly explain the convergence criteria of a displacement function.	6
b.	Derive shape functions for a 3-noded triangular element in terms of natural co-ordinate	6
	systems.	U
c.	Derive Jacobean matrix for a CST element and use this expression to determine Jacobean for	
	the triangular plate shown FigQ.3(c).	

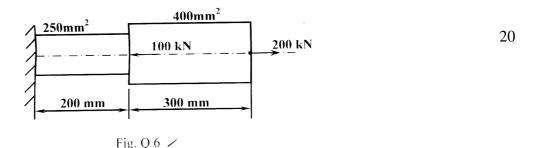
8

Page No... 2

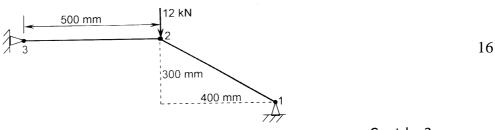

P13ME64

- 4 a. Write a note on Lagrangian interpolation function and derive functions for a 4-noded quadrilateral element using it.
 - b. The nodal displacements of a triangular element shown in Fig.Q4(b) are given by,

 $u_1 = 0.0 \text{ mm}; u_2 = 0.03 \text{ mm}; u_3 = 0.0 \text{ mm}$


 $v_1 = 0.0625 \text{ mm}; v_2 = 0.0 \text{ mm}, v_3 = 0.0625 \text{ mm}$

Determine the displacement at a point P whose x and y coordinate are (50, 45) mm.

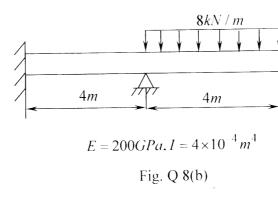

UNIT - III

- 5 a. A 2-noded bar element is subjected to a body force (force/unit volume) and surface forces 10 (force/unit length), derive expressions for element load vectors due to the above forces.
 - b. Derive strain-displacement matrix B and strain matrix for a linear triangular element and show that they are constant.
- 6. A stepped bar member is loaded as shown in Fig.Q.6. Determine the nodal displacement, stresses in each bar and support reactions. Use Penalty method to handle the boundary conditions. Take E = 200 GPa.

- 7 a. What is transformation matrix? Mention how it is useful in the analysis of truss problems.
 - b. For the truss structure shown in Fig.Q7 (b), determine the nodal displacements, stress in horizontal member and reactions at top support. Take E = 200 GPa and A = 200 mm²

Contd....3

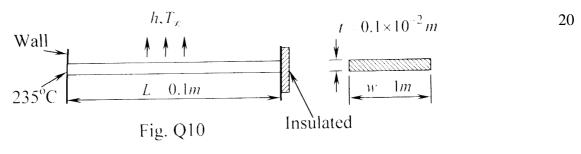
12


8

10

4

P13ME64


- 8 a. Write the expressions of Hermite's shape functions of a 2-noded beam element and draw their variation along the element. Why they are called Harmite's shape functions?
 - b. For the beam shown in Fig. Q.8(b). Determine the nodal deflections and slops. Take E = 70 GPa, $I = 3x10^{-4}$ m⁴

UNIT - V

- 9 a. Using Garlerkin's approach, derive the element conditions matrix for 1D element used for steady state heat transfer problems.
 - b. Consider a brick wall Fig. Q.9(b) of thickness, L = 0.3 m, $K = 0.7 \text{ W/m}^{\circ}\text{C}$. The inner surface is at 28°C and the outer surface is exposed to cold air at -15°C. The heat transfer coefficient associated with the outside surface is $h = 40 \text{ W/m}^{2}\text{K}$. Determine the steady-state temperature distribution within the wall and also the heat flux through the wall. Use a two-element model.

10. A metallic fin, shown in Fig. Q.10. with thermal conductivity $K = 360 \text{ W/m}^{\circ}\text{C}$, 0.1 cm thick and 10cm long extends form a wall whose temperature is 235°C. Determine the temperature distribution and amount of heat transferred from the fin to air at 20°C with $h = 9 \text{ W/m}^2 \text{ K}$. Take the width of fin to be 1m and use three-element model.

* * * *

6

14

8