(i) Octahedral normal and shearing strain (ii) Deviatoric and spherical strain tensor.

- b. Derive strain-displacement relation.
- The displacement at point given by $u = (x^2 + 3) * 10^{-3} v = 3y^2 z \times 10^{-3} w = (x + 3z) 10^{-3}$ 4 a. Determine the strain components at point (1, 2, 3)
 - b. For a given strain field,

$$\epsilon_{x} = 5 + x^{2} + y^{2} + x^{4} + y^{4}; \qquad \epsilon_{y} = 6 + 3x^{2} + 3y^{2} + x^{4} + y^{4};$$

$$\gamma_{yz} = 10 + 4xy (x^{2} + y^{2} + 2); \quad \epsilon_{z} = \gamma_{yz} = \gamma_{zx} = 0$$
10

Determine if this system of strain is possible and find displacement components in terms of

x, y assuming their displacement and rotation about origin is zero.

c. List the six compatibility equations.

Contd....2

4

12

8

6

P13ME661

Page No... 2

10

UNIT - III

5 a. A cubical element is subjected to the following state of stress:

 $\sigma_x = 100MPa, \ \sigma_y = -20MPa, \ \sigma_z = -400MPa, \ \tau_{xy} = \tau_{zy} = \tau_{zx} = 0$

Assuming material to be homogeneous and isotropic, determine the principal shear strains and the octahedral shear strain, if $E = 2 \times 10^5$ MPa and $\mu = 0.25$.

- b. The displacement field is given by u_x = 0.06x+0.05y-0.01z, u_y = 0.01y-0.03z, u_z = -0.02x+0.01z at point (1, 2, 3). Determine stress components assuming E = 196 GPa and G = 78.48 GPa.
- 6.Discuss the following :i) Principle of superpositionii) Hooke's lawiii) Uniqueness theoremiv) Saint-Venant's principle.

UNIT - IV

- 7 a. Define the stress function. Derive the equations for stress function for the plane strain case.
 10
 b. Obtain expressions for the torsion in a bar of circular cross section.
 10
- 8 a. Given the stress function $\phi = \left(\frac{H}{\pi}\right) z \tan^{-1}\left(\frac{x}{z}\right)$. Determine whether stress function ϕ is 10

admissible. If so determine the stresses.

b. Obtain expression for the torsion in a bar of elliptical cross section. 10

UNIT - V

- 9. Derive the equation for thick walled cylinder subjected to internal and external pressures. 20
- 10 a. Determine the stress in thin circular disk subjected temperature symmetrical about centre.
 - b. Show that the resultant circumferential force across any radial section of a hollow disk subjected to thermal loading is zero.

* * * *