

b. Show that all trees are planar.

Contd...2

5

5

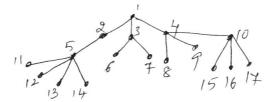
5

5

5

5

5


5

5

6

7

c. Write pre-order, post-order, traversal for the following tree.

- d. Explain the steps involved in merge sort algorithm.
- 6 a. Construct an optimal prefix code for the symbols a, o, q, u, y, z that occur with frequencies 20, 28, 4, 17, 12, 7 respectively.
 - b. Explain the steps involved in Dijkstra's algorithm.
 - c. Explain Prim's algorithm.
 - d. Explain Kruskal's algorithm.

UNIT - IV

- 7 a. Buick automobiles come in four models, 12 colours, three engine sizes and two transmission types.
 - (i) How many distinct Buicks can be manufactured?
 - (ii) If one of the available colours is blue how many different blue Buicks can be manufactured? 5
 - b. i) How many permutations for eight letters a, c, f, g, i, t, w, x.
 - ii) Consider the permutations in part <i>. How many start with letter t? How many starts with letter t and end with letter c?
 - c. Find the number of arrangements of the letters in TALLAHASSEE. How many of these arrangements have no adjacent A's?
 - d. How many bytes contain :
 - (i) Exactly two 1's (ii) exactly four 1's (iii) exactly six 1's (iv) at least six 1's.
- 8 a. How many integer solutions are there for the equation $C_1+C_2+C_3+C_4=25$, if $0 \le C_i$, for all $1 \le i \le 4$?

b. Determine the co-efficient of
$$x^8$$
 in $\frac{1}{(x-3)(x-2)^2}$.

c. Find a formula for $\sum_{k=1}^{n} k$ using generating function for the sequence 0,1,3,6,10,15,...

UNIT - V

9 a.	Solve the recurrence relation $a_n = 7a_{n-1}$, where $n \ge 1$ and $a_2 = 98$.	8
b.	Solve the recurrence relation $F_{n+2} = F_{n+1} + F_n$ where $n \ge 0$ and $F_0 = 0$, $F_1 = 1$.	7
c.	Solve recurrence relation $2a_{n+3} = a_{n+2} + 2a_{n+1} - a_n$, $n \ge 0$, $a_0 = 0$, $a_1 = 1$, $a_2 = 2$.	5
10 a.	Solve recurrence relation $a_n-3a_{n-1} = 5(7^n)$, where $n \ge 1$ and $a_0 = 2$.	7

- b. Solve the relation $a_n-3a_{n-1} = n$, $n \ge 1$, $a_0 = 1$.
- c. Find number of n digit quaternary (0, 1, 2, 3) sequences in which there is never a '3' anywhere to the right of a '0'.

6

7