\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; June - 2017 Electronic Devices and Communication
 (Common to All Branches)

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1. a With neat circuit diagram and waveform explain the working of full wave bridge rectifier.
b. Discuss the DC load line analysis and Q point for series diode configuration using a neat circuit diagram and characteristics.
c. For the network shown in Fig. Q1(c) compute :
i) V_{0}
ii) I_{1}
iii) $I_{D_{1}}$
iv) $I_{D_{2}}$.

b. Describe the operation of solar cell with a neat diagram.
c. Draw and explain the biasing circuit and characteristics of photodiode.

UNIT - II

3 a. With a neat diagram, explain the construction, operation and characteristics of P-channel depletion type MOSFET.
b. Sketch the circuit diagram of voltage-divider biasing arrangement for an n-channel enhancement MOSFET, If the circuit has $V_{D D}=40 \mathrm{~V}, \mathrm{R}_{1}=22 \mathrm{M} \Omega, \mathrm{R}_{2}=18 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{D}}=3 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{S}}=0.82 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{GS}(\mathrm{th})}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}(\mathrm{ON})}=3 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{GS}(\mathrm{ON})}=10 \mathrm{~V}$:
i) Draw the load line
ii) Calculate $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{GSQ}}$ and V_{DS}.

4 a For the network shown in Fig. Q. 4 (a) was $\mathrm{V}_{\mathrm{GS}}=0.35 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DQ}}=7.6 \mathrm{~mA}$. Compute;
i) g_{m} and r_{d}
ii) Z_{i}, Z_{o} and A_{V}
iii) Sketch the ac equivalent network.

$$
\begin{align*}
& I_{D S S}=8 m A \\
& V_{P}=-3 \mathrm{~V} \tag{8}\\
& Y_{0 S}=20 \mu \mathrm{~s}
\end{align*}
$$

b. Write the feedback circuits used as an oscillator and explain the Barkhausen criterion for oscillation.
c. With neat circuit, describe the working of FET phase shift oscillator.

UNIT - III
5 a . Write the circuit diagrams of Op-Amp Inverting and Non-Inverting amplifiers. If $\mathrm{R}_{1}=20 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{f}}=60 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{i}}=0.5 \mathrm{~V}$, calculate the output voltage of Op-Amp and Non-Inverting amplifier circuits.
b. Write the Op-Amp circuit and output voltage equation for:
i) Interior
ii) Differentiator
iii) Voltage follower.
c. Define the term slew rate of the Op-Amp. For the circuit shown in Fig. Q 5(c). Calculate the maximum frequency that may be used. If slew rate $=0.5 \mathrm{~V} / \mu \mathrm{s}$.

$V_{0}=-\left(3 V_{1}+4 V_{2}+5 V_{3}\right)$ where V_{1}, V_{2}, V_{3} are inputs. Assume $R_{f}=120 \mathrm{k} \Omega$.
b. With neat circuit diagrams, explain the working of current controlled voltage source and current controlled current sources.
c. Draw the circuit of Band pass active filter and its frequency response. If $\mathrm{R}_{1}=\mathrm{R}_{2}=10 \mathrm{k} \Omega, \mathrm{C}_{1}=0 \mu \mathrm{~F}$ and $\mathrm{C}_{2}=0.002 \mu \mathrm{~F}$. Calculate the cutoff frequencies of the band pass filter.

UNIT - IV

7 a. Draw the block diagrams of microprocessor and microcontroller. Discuss the architectural differences between $\mu \mathrm{p}$ and $\mu \mathrm{c}$.
b. Compute the following conversions :
i) $(29.3749)_{10}=(\quad)_{2}=(\quad)_{16}$
ii) $\quad(\text { FACE })_{16}=(\quad)_{10}=(\quad)_{2}$
iii) $(110.1101)_{2}=(\quad)_{10}=(\quad)_{16}$.
c. Write a note on 16 -bit microcontroller.

8 a. Discuss the flags and PSW of $8051 \mu \mathrm{C}$.
b. With neat diagram, explain the $8051 \mu \mathrm{c}$ oscillator circuit and timing.
c. Draw the diagram of Port 2 pin configuration of $8051 \mu \mathrm{c}$.

UNIT - V

9 a. List the frequency band, range and application of radio spectrum. 9
b. Write and explain the block diagram of Basic cellular system. 6
c. What is Duplexing? Define frequency division Duplexing and time division Duplexing. 5

10 a . Describe the basic wireless network topologies. 8
b. Write the advantages and disadvantages of cellular systems with small cells. 6
c. With a neat diagram, explain the simplified cellular telephone system. 6

