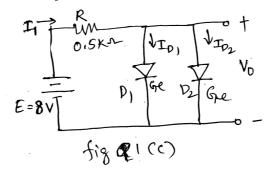
U.S.N					
01.0121					İ

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

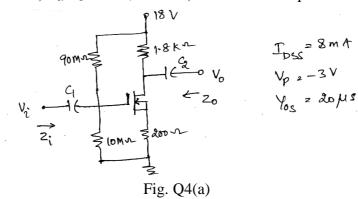
Second Semester, B.E. – Semester End Examination; June - 2017 Electronic Devices and Communication


(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I


- 1. a With neat circuit diagram and waveform explain the working of full wave bridge rectifier.
 - b. Discuss the DC load line analysis and Q point for series diode configuration using a neat circuit diagram and characteristics.
 - c. For the network shown in Fig. Q1(c) compute:
 - i) **V**₀
- ii) I₁
- iii) I_{D_1}
- iv) I_{D_2} .

- 2 a. Write the circuit diagram of Zener diode regulator and analysis the circuit for fixed input voltage V_i and variable load R_L .
 - b. Describe the operation of solar cell with a neat diagram.
 - c. Draw and explain the biasing circuit and characteristics of photodiode.

UNIT - II

- 3 a. With a neat diagram, explain the construction, operation and characteristics of P-channel depletion type MOSFET.
 - b. Sketch the circuit diagram of voltage-divider biasing arrangement for an n-channel enhancement MOSFET, If the circuit has $V_{DD}=40~V,~R_1=22~M\Omega,~R_2=18~M\Omega,~R_D=3~k\Omega,~R_S=0.82~k\Omega,~V_{GS(th)}=5~V,~I_{D(ON)}=3~mA$ at $V_{GS(ON)}=10~V$:
 - i) Draw the load line
- ii) Calculate I_{DQ} , V_{GSQ} and V_{DS} .
- 4 a For the network shown in Fig. Q.4 (a) was $V_{GSQ} = 0.35$ V and $I_{DQ} = 7.6$ mA. Compute;
 - i) g_m and r_d
- ii) Z_i , Z_0 and A_V
- iii) Sketch the ac equivalent network.

Contd....2

8

7

5

7

5

8

10

10

8

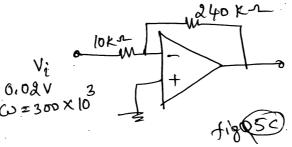
- b. Write the feedback circuits used as an oscillator and explain the Barkhausen criterion for oscillation.
- 6

With neat circuit, describe the working of FET phase shift oscillator.

6

UNIT - III

5 a. Write the circuit diagrams of Op-Amp Inverting and Non-Inverting amplifiers. If $R_1 = 20 \text{ k}\Omega$, $R_f = 60 \text{ k}\Omega$, $V_i = 0.5 \text{ V}$, calculate the output voltage of Op-Amp and Non-Inverting amplifier circuits.



- b. Write the Op-Amp circuit and output voltage equation for:
 - i) Interior
- ii) Differentiator
- iii) Voltage follower.

8

6

Define the term slew rate of the Op-Amp. For the circuit shown in Fig. Q 5(c). Calculate the c. maximum frequency that may be used. If slew rate = $0.5 \text{ V/}\mu\text{s}$.

Design an Op-Amp summing amplifier to obtain an output voltage 6. a

 V_0 = - (3 V_1 +4 V_2 +5 V_3) where V_1 , V_2 , V_3 are inputs. Assume R_f = 120 $k\Omega$.

6

b. With neat circuit diagrams, explain the working of current controlled voltage source and current controlled current sources.

7

c. Draw the circuit of Band pass active filter and its frequency response. If $R_1 = R_2 = 10 \text{ k}\Omega$, $C_1 = 0 \mu\text{F}$ and $C_2 = 0.002 \mu\text{F}$. Calculate the cutoff frequencies of the band pass filter.

7

UNIT - IV

Draw the block diagrams of microprocessor and microcontroller. Discuss the architectural 7 a. differences between up and uc.

8

9

- Compute the following conversions: b.
 - - i) $(29.3749)_{10} = ()_2 = ($
- $(FACE)_{16} = ()_{10} = ($ ii) $)_2$

3

Write a note on 16-bit microcontroller. c.

iii) $(110.1101)_2 = ()_{10} = ()_{16}$.

8

8 a. Discuss the flags and PSW of 8051 µC.

8

b. With neat diagram, explain the 8051 µc oscillator circuit and timing. Draw the diagram of Port 2 pin configuration of 8051 µc. c.

4

9 a. List the frequency band, range and application of radio spectrum.

9

b. Write and explain the block diagram of Basic cellular system.

6 5

c. What is Duplexing? Define frequency division Duplexing and time division Duplexing.

8

10 a. Describe the basic wireless network topologies.

6

b. Write the advantages and disadvantages of cellular systems with small cells.

With a neat diagram, explain the simplified cellular telephone system.