| U.S.N |  |  |  |  |  |
|-------|--|--|--|--|--|

# P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

## Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; June - 2017 Microcontroller

| Time at 2 ha                                                                               | WHEFOCORFORET  Was Markey 100                                                           |     |  |  |
|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-----|--|--|
| Time: 3 h                                                                                  |                                                                                         |     |  |  |
| Note: Answ                                                                                 | er FIVE full questions, selecting ONE full question from each unit.                     |     |  |  |
|                                                                                            | UNIT - I                                                                                |     |  |  |
|                                                                                            | the register of MPS 430 CPU and describe its speciality and necessity.                  | 1(  |  |  |
|                                                                                            | entiate between :                                                                       |     |  |  |
| ` /                                                                                        | vard and Von-Neuman architecture (ii) RISC and CISC                                     | 1(  |  |  |
| , ,                                                                                        | icroprocessor and Microcontroller.                                                      |     |  |  |
|                                                                                            | six blocks meant for peripheral function and describe their functionalities.            | 10  |  |  |
| b. Taking                                                                                  | a practical control system as an example, explain the role of microcontroller and its   |     |  |  |
| various                                                                                    | s components with a neat diagram. Discuss possible choices for microcontroller in       | 10  |  |  |
| this ap                                                                                    | plication substantiating your choice.                                                   |     |  |  |
|                                                                                            | UNIT - II                                                                               |     |  |  |
| 3 a. Expla                                                                                 | in the operation of a stack pointer register given following initial conditions and     |     |  |  |
| seque                                                                                      | nce of instructions. Indicate status of SP and other concerned register after executing |     |  |  |
| each o                                                                                     | of these instructions.                                                                  |     |  |  |
| Initial                                                                                    | value of SP: 0240                                                                       |     |  |  |
| Push Y                                                                                     | W # 0x3355                                                                              | 10  |  |  |
| Push \                                                                                     | W # 0x2288                                                                              |     |  |  |
| Mov V                                                                                      | $W # 0x1122, R_0$                                                                       |     |  |  |
| Pop V                                                                                      | $V = R_0$                                                                               |     |  |  |
| Pop V                                                                                      | $V R_1$                                                                                 |     |  |  |
| b. Discus                                                                                  | ss the following with regard to Reset mechanisms in MSP 430:                            |     |  |  |
| i) In                                                                                      | itialization process before the main activity begins                                    | 1.0 |  |  |
| ii) Ha                                                                                     | andling Hardware issues                                                                 | 1(  |  |  |
| iii) Fl                                                                                    | ags in interrupt flag register IRG1.                                                    |     |  |  |
| 4 a. Enum                                                                                  | erate speciality of constant generator and its usefulness.                              | 4   |  |  |
| b. Develop a simple hardware circuit and program to record the most recent eight status of |                                                                                         |     |  |  |
|                                                                                            | pottom.                                                                                 | 1(  |  |  |
| •                                                                                          | ibe the following instructions with an example:                                         |     |  |  |
| i) Swr                                                                                     | -                                                                                       | 6   |  |  |

### **UNIT - III**

5 a. Differentiate between subroutines and interrupt service routines.

- 5
- b. Write an assembly language program to toggle LED's with period of 0.5 sec using interrupts generated by timer-A in up-mode.
- 10
- c. Compare the low-power modes of MSP 430 Active, LPMO, LPM3 and MPM4 for clock settings and current values.
- 5
- 6. a Discuss the bit settings of SR register for different low power modes on MPS 430.
- 6
- b. Write an ISR in C language to toggle LED's with period of 0-5 sec using interrupts from timer-A.
- 8

6

c. Describe the step wise process when an interrupt arises.

#### **UNIT - IV**

- 7 a. Draw the simplified block diagram of Basic timer 1 and list its high lighting features. Also, explain different bits of its control register BTCTL.
- 8

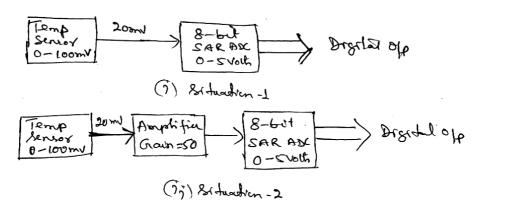
b. Construct a state machine to set the timer of clock using Timer-A.

- 12
- 8 a. Draw the simplified block diagram of Timer-B and describe function of each unit.
- 10

10

b. Discuss the edge-aligned PWM and two main parameters of PWM design for 60% duty cycle and frequency = 100 Hz.

#### UNIT - V


- 9 a. Show that a comparator acts as 1-bit ADC. Design a comparator based warning circuit which glows a LED when the temperature crosses the set threshold value.
- 10
- b. Describe the operation of a 4-bit switched capacitor SAR ADC with neat diagram. Indicate switch position for an input of  $V_{in} = 0.4$  VFS and binary outputs 0110 and 1000.
- 10
- 10 a. Draw the simplified block diagram of ADCIO and explain the sections relating to clock and voltage source options.
- 10

b. Explain principle of operation of sigma delta ADC.

5

5

c. Determine the digital output corresponding to two situations below and comment on the outputs

