

UNIT - III

5 a.	Obtain an expression for the magnetic flux density at a point due to a current carrying	
	straight conductor of finite length. Extend the analysis for the case of infinity long straight	10
	conductor.	
b.	Evaluate the closed line integral of H about the rectangular path $P_1(2, 3, 4)$ to $P_2(4, 3, 4)$ to	
	P ₃ (4, 3, 1) to P ₄ (2, 3, 1) to P ₁ , given $H = 3za_x - 2x^3a_z$ A/m.	10
	i) Determine the quotient of the closed line integral and the area enclosed by the path as an	10
	approximation to $(\nabla xH)y$ ii) Determine $(\nabla x H)y$ at the center of the area.	
6. a	Define the followings along with the mathematical equations:	0
	i) Force on a charged particle ii) Force on a closed circuit iii) Torque on a closed circuit.	9
b.	Explain the magnetization and permeability with the help of their equations.	6
C.	Discuss the concept of magnetic boundary conditions.	5
UNIT - IV		
7 a.	Explain the concept of displacement current.	6
b.	Briefly discuss the Maxwell's equations in integral forms.	7
c.	The electric field amplitude of a uniform plane wave propagating in the a_z direction is 250	
	V/m. If $E = E_x a_x$ and $\omega = 1.00$ Mrad/s, find:	7
	i) The frequency ii) the wavelength iii) the period iv) The amplitude of H.	
8 a.	Write a short note on standing wave ratio.	5
b.	Explain the reflection of uniform plane waves at normal incidence.	8
c.	A uniform plane wave in air is normally incident on a dielectric slab of thickness $\lambda 2/4$, and	
	intrinsic impedance $\eta 2 = 260$. Determine the magnitude and phase of the reflection	7
	coefficient.	
UNIT - V		
9 a.	Explain the effects of imperfect earth and effects of curvature of earth.	8
b.	Explain the super refraction and scattering phenomena.	8
c.	Briefly explain the Tropospheric Propagation.	4
10	An Ionospheric wave is reflected from a layer of height of 200 km. The takeoff angle is 20°	
	and the earth's radius is 6370 km. Calculate the skip distance if the earth is considered as:	6
	i) flat surface ii) spherical.	
b.	Calculate the skip distance for flat earth with MUF of 10 MHz if the wave is reflected from	8
	a height of 300 km where the maximum value of n is 0.9.	0
c.	Explain the term critical frequency, MUF, LUF.	6