U.S.N

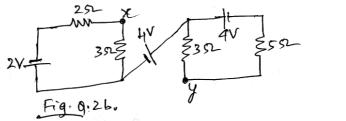
P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. – Semester End Examination; June – 2017

Basic Electrical Engineering

(Common to All Branches)


Time: 3 hrs

Max. Marks: 100

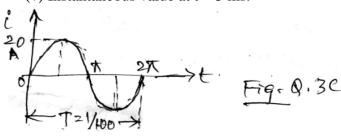
Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I

- 1. a. A circuit consists of two parallel resistors having resistance of 20 Ω and 30 Ω respectively, connected in series with 15 Ω resistor. If the current through 15 Ω resistor is 3 A. Find; (i) Current in 20 Ω and 30 Ω resistors (ii) The supply voltage across the whole circuit (iii) The total power and power consumed in each resistor.
 - b. With examples, clearly differentiate between dynamically induced emf and statically induced emf.
 - c. A coil of resistance 150 Ω is placed in a magnetic field of 0.1 mwb. The coil has 500 turns and a galvanometer of 450 Ω is connected in series with it. The coil is moved in 0.1 sec from the given 6 field to another field of 0.3 mwb. Find the average induced emf and the average current through the coil.
- 2 a. State and illustrate Lenz's law.
- b. Obtain the potential difference V_{xy} in the circuit of Fig. Q. 2b.

- c. Define the following terms giving their equations if any: (i) Self inductance (ii) Mutual inductance
 - (iii) Ohm's law (iv) Kirchhoff's laws.

UNIT - II


- 3 a. Define RMS and Average value of a sinusoidal emf and obtain their expressions.
 - b. When 220 V AC supply is applied across AB terminal of the circuit shown in Fig.Q.3b. The total power input is 3.25 kW and current is 20 A. Find the current through Z_2 and elements of Z_2 .

- c. For the current waveform shown in Fig. Q.3c. Find,
 - (i) Peak current

(ii) Average value

(iii) Frequency

(v) Instantaneous value at t = 3 ms.

(iii) Periodic time

6

8

6

6

8

6

6

	P15EE25 Page No 2		
4 a.	A series RLC circuit is connected across a 50 Hz supply, where R = 100 Ω , L = 159.16 mH and	8	
	C = 63.7 μ F. If the voltage across C is 150–90V, Find the supply voltage.	U	
b.	With reference to AC circuit, differentiate between,		
	(i) phase and phase difference (ii) lag and lead power factor	6	
0	(iii) Reactance and impedance.		
C.	A current of average value 18.019 A is flowing in a circuit to which a voltage of peak value in a 141.42 V is applied. Determine;		
	(i) Impedance in Polar form (ii) Power	6	
	Assume voltage lags current by 30°.		
UNIT - III			
5 a.	List out the advantages of 3-\$\$ systems over single phase systems.	6	
b.	What is fuse? Define the following terms with respect to fuse:	6	
	(i) Rated carrying current (ii) Fusing current (iii) Fusing factor.	0	
c.	What is electric shock? Mention the factors on which electric shock depend. What are the precautionary measures to be taken against electric shock?	8	
6. a	Discuss the effect of variation of power factor on wattmeter reading.	6	
b.	Calculate the current flowing into each terminal and in each phase of the winding of a 3-\$,		
	Δ connected induction motor developing an output of 250 HP at 2300 V, between the terminals at a	8	
	power factor of 0.75 and efficiency of 85%.		
c.	What do you mean by earthling? Explain why electrical appliances must be earthed.	6	
7	UNIT - IV	0	
	What are the various types of DC generators? Give their circuit representation and related equations.	8	
b.	The current drawn from the mains by a 220 V DC shunt motor is 4 A on no load. The resistances of the field and armature windings are 110 Ω and 0.2 Ω , respectively, if the line current on full load is	6	
	40 A at a speed of 1500 rpm. Find the no load speed.	0	
C	Enumerate the advantages of having stationery armature and rotating magnetic field system in a		
0.	large size alternator.	6	
8 a.	Define torque. With usual notation derive the expression for the armature torque developed in a DC	6	
	motor.	6	
b.	A 4 pole, 1500 rpm Y-connected alternator has 9 slots/pole and 8 conductors/slot. Determine the	6	
	flux/pole to give a terminal voltage of 3300 V. Take winding factor and pitch factor as unity.	0	
c.	A separately excited DC generator, when running at 1000 rpm supplies 50 A at 250 V. Find out how	0	
	much current it will deliver when the speed falls to 800 rpm. Take armature resistance as 0.01 Ω	8	
and brush drop as 1 V/brush. UNIT - V			
9 a	Explain the principle of operation of a single phase transformer giving its no load vector diagram.	8	
b.	Explain the concept of rotating magnetic field in an induction motor.	6	
	Determine the efficiency of a 150 kVA transformer at 50% and 75% of full load at 0.8 power factor lag if the full load copper and iron losses are 1600 watts and 1400 watts, respectively	6	
10 a.	In a transformer the iron loss is constant loss and copper loss is the variable loss. Justify this? Explain how they are minimized.	8	
b.	Explain why an induction motor needs a starter during starting.	6	
c.	A 6 pole IM is supplied by a 10 pole alternator which is driven at 600 rpm. If the motor is running at 970 rpm, determine the percentage slip.	6	