6				
E ST D	P.E.S. College of Engineering, Mandya - 571 401			
ALL ALL	(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Electrical and Electronics Engineering			
Semester End Examination; June - 2017				
T	<i>Electromagnetic Field Theory</i> <i>Time: 3 hrs</i> Max. Marks: 100			
	ote: Answer FIVE full questions, selecting ONE full question from each unit.			
	UNIT - I			
1 a.	State and explain experimental law of coulomb.	4		
b.	Derive the expression for electric field intensity due to an infinite line charge with uniform	8		
	charge distribution $\rho_L C/m$.	0		
c.	A line charge density $\rho_L = 24$ nC/m is located in free space on the line Y = 1 m and Z = 2 m.			
	i) Find E at the point P(6, -1, 3)	8		
	ii) What point charge Q_A should be located at A(-3, 4, 1) to make Y component of total \overline{E} zero	0		
	at P.			
2 a.	Using Gauss's law, derive \overline{D} and \overline{E} in all the regions for a spherical shell of charge having	8		
	surface charge density $\rho_s C/m^2$.	-		
b.	State and explain Maxwell's first equation.	4		
c.	If $\overline{D} = xy^2 z^2 \overline{a}_x + x^2 y z^2 \overline{a}_y + x^2 y^2 z \overline{a}_z$ C/m ² , find			
	i) an expression for ρ_v	8		
	ii) The total charge within the cube defined by $0 \le x \le 2$, $0 \le y \le 2$, $0 \le z \le 2$			
UNIT - II				
3 a.	Explain the following:	8		
_	i) Potential at a point due to sheet of charge ii) Relation between E and V.			
	Describe briefly on energy density in the electrostatic field.	6		
c.	Given $V = 2x^2y-5z$ at point p(-4, 3, 6). Find the potential, electric field intensity and volume	6		
1 9	charge density. Point charges $Q_1 = 1nC$, $Q_2 = -2nC$; $Q_3 = 3nC$ and $Q_4 = -4nC$ are placed one by one in the same			
ч а.	order at $(0, 0, 0)$, $(1, 0, 0)$, $(0, 0, -1)$ and $(0, 0, 1)$ respectively. Calculate the energy in the	6		
	system when all charges are placed.	0		
b.	State and prove uniqueness theorem.	8		
c.	Determine whether or not the following potential field satisfies the Laplace's equation:			
	i) $V = x^2 - y^2 + z^2$	6		
	ii) $V = rcos\phi + z$.			

UNIT - III

5 a.	Define conduction current density J and write an explanatory note on continuity equation of current.	10	
b.	Derive point form of ohm's law.	4	
c.	Find the current crossing the portion of Y = 0 plane defined by $-0.1 \le X \le 0.1m$ and		
	$-0.002 \le Z \le 0.002$ m, if $\overline{J} = 10^2 X \overline{a_y}$ where \overline{J} is the current density.	6	
6. a	Discuss the boundary conditions between two perfect dielectrics.	10	
b.	Derive an expression for capacitance of a co-axial cable.	6	
c.	A spherical condenser has a capacity of 54 pF. It consists of two concentric spheres differing in	4	
	radii by 4cm and having air as dielectric. Find their radii.	4	
UNIT - IV			
7 a.	State and explain Biot-Savart's law.	6	
b.	Derive an expression for magnetic field intensity (\overline{H}) due to straight conductor of finite length.	8	
c.	An infinitesimal length 10^{-3} m of wire is located at the point (1, 0, 0) and carrier a current 2 A in		
	the direction of the unit vector $\overline{a_x}$. Find the magnetic field intensity due to the current element at the point (0, 2, 2).	6	
8 a.	State and prove Ampere's circuital law.	6	
b.	Let $\overline{A} = (3y - z)\overline{a_x} + 2xz\overline{a_y}$ wb/m in a certain region of free space.	0	
	i) Show that $\nabla .\overline{A} = 0$ ii) At P (2, -1, 3) find $\overline{A}, \overline{B}, \overline{H}$ and \overline{J} .	8	
c.	Write a note on scalar and vector magnetic potentials.	6	
UNIT - V			
9 a.	State and explain Faraday's law for induced EMF.	8	
b.	Explain Faraday's law applied to, i) Stationary path, changing field ii) Steady field moving circuit. Derive necessary relationships.	6	
c.	A circular loop of 10 cm radius is located in X-Y plane with magnetic field $\overline{B} = 0.5 \cos(377t) \left[3\overline{a_x} + 4\overline{a_z} \right] T$. Calculate voltage induced in a loop.	6	
10		0	
	Derive an expression for force between two parallel conductors.	8	
b	A point charge of Q = -1.2C has velocity $\overline{V} = (5\overline{a_x} + 2\overline{a_z} - 3\overline{a_z})$ m/s. Find the magnitude of the force exerted on the charge if, i) $\overline{E} = -18\overline{a_x} + 5\overline{a_y} - 10\overline{a_z}$; V/m ii) $\overline{B} = -4\overline{a_x} + 4\overline{a_y} + 3\overline{a_z}$; T	6	
C.	A solenoid with $N_1 = 2000$, $r_1 = 2$ cm and $l_1 = 100$ cm is concentric within a second coil of $N_2 = 4000$, $r_2 = 4$ cm and $l_2 = 100$ cm. Find mutual inductance assuming free space conditions.	6	