

UNIT - III

5 a. Draw the P-T diagram of water with relevant points.

b. Define the following :

i) Pure Substance	ii) Dryness Fraction	iii) Sensible Heat	6
iv) Degree of super Heat	v) Latent Heat	vi) Triple Point.	

6

Page No... 2

8

4

10

6

8

P	15IP43	Page No 2		
c.	Two Boilers one with super heater and other without superheater are of	delivering equal quantities		
	of steam of steam into a common main. The pressure in the boiler	and main is 20 bar. The		

8 temperature of steam from a boiler with a superheater is 350°C and temperature of the steam in the main is 250°C. Determine the quantity of steam supplied by the other boiler. Take $C_{PS} = 2.25$ kJ/kg.

- 6 a. Derive the relationship between the two principal specific heats and characteristic gas constant for 8 a perfect gas.
 - b. A vessel of capacity 3 m^3 contains 1kg mole of N₂ at 90°C

i) Calculate pressure and specific volume of the gas

ii) If the ratio of specific heats is 1.4 evaluate the values of C_p and C_v .

iii) Subsequently, the gas cools to the atmospheric temperature of 20°C. Evaluate pressure of gas.

Differentiate between an ideal and a perfect gas. c.

UNIT - IV

- 7 a. With the help of a PV and T.S. diagram, derive an expression for the efficiency of a Rankine 10 cycle.
 - b. Steam at 20 bar, 360°C is expanded in a steam turbine to 0.08 bar. It then enters a condenser, where it is condensed to saturated liquid water. The pump feedback the water into the boiler.
 - i) Assuming ideal processes, find per kg of steam the network and the cycle efficiency 10 ii) If the turbine and the pump have each 80% efficiency, find the percentage reduction in the network and cycle efficiency.
- 8 a. Derive an expression for the air standard efficiency of a diesel cycle.
- b. A air standard dual cycle has a compression ratio of 16, and compression begins at 1 bar, 50°C. The maximum pressure is 70 bar. The heat transfer to air at constant pressure is equal to that at constant volume. Estimate; 10
 - i) the pressure and temperatures at the cardinal points of the cycle
 - ii) the cycle efficiency

iii) the m.e.p. of the cycle, $C_v = 0.718 \text{ kJ/kgK}$, $C_p = 1.005 \text{ kJ/kgK}$.

Contd...3 UNIT - V

- 9 a. Discuss the methods employed for increasing thermal efficiency and specific output of open cycle 10 Gas turbine.
 - b. A Gas turbine plant has temperature limits of 1000° C and 10° C compression in the compressor and the expansion in the turbine are iscentropic. Determine,
 - i) The pressure ratio which will give the maximum network output 10
 - ii) The maximum net specific work output
 - iii) The thermal efficiency at maximum workoutput Take $\gamma = 1.4$, $C_p = 1.005$ kJ/kgK.
- 10 a. Derive an expression for the volumetric efficiency of reciprocating air compressor. 6
 - b. What are the advantages of multi stage air compressor over single stage air compressor?
 - Find the power required to compress and delivers 2 kg of air per minute from 1 bar and 20°C to a c. delivery pressure 7 bar when the compression is carried out in,
 - i) single stage compressor ii) two stage compressor
 - The compression of air follows the law $PV^{1.4} = C$. Take; R = 0.287 kJ/kgK.