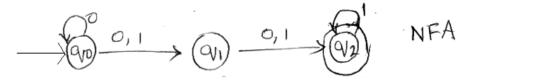
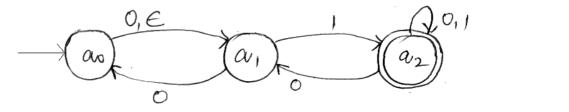
U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)


Fourth Semester, B.E. - Information Science and Engineering Semester End Examination; June - 2017 Finite Automata and Formal Languages

Time: 3 hrs Max. Marks: 100


Note: Answer FIVE full questions selecting ONE full question from each unit.

UNIT - I

- 1. a Construct a DFA to accept the following
 - i) Strings of 0's and 1's starting with at least two 0's ending with at least two1's
 - ii) Strings of a's and b's having even number a's and odd number of b's
 - b. Differentiate between NFA and DFA and explain the applications of Finite automata.
 - c. Convert the given NFA to DFA

2 a. Construct a DFA from the following epsilon NFA.

b. Design a DFA to accept the language

$$L = \left\{ W(ab + ba) \mid W \in \left\{ a, b \right\} \right\}$$

c. Find the minimized DFA for the following:

S	0	1
\rightarrow A	В	A
В	A	С
С	D	В
*D	D	A
Е	D	F
F	G	Е
G	F	G
Н	G	D

10

8

5

7

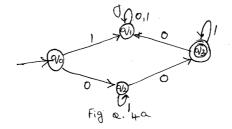
6

UNIT - II

- 3 a. Obtain the regular expression for the following languages
 - i) L= $\{a^n b^m : (m+n) \text{ is even}\}$

4

- ii) L= $\{a^n b^m : n > 4 \text{ and } m \le 3\}$
- b. Obtain the regular expression from the given DFA using Kleen's theorem


4

6

c. Construct the automata for the regular expression (a+b) (ab+ba)*aa

6

- d. List and explain the applications of regular expressions.
- 4 a. Obtain the regular expression for the following DFA using state elimination method.

3

b. State and prove pumping lemma for regular languages.

10

c. Prove that the language

$$L=\{a^{n!}/n\geq 0\}$$

7

Is not regular?

UNIT - III

- 5 a. Write the CFG for the following languages
 - i) L= $\{a^ib^jc^k: i+j=k, l, j>=0\}$

5

ii) L= $\{a^nb^mc^k: n+2m = k, n, m, k \ge 0\}$

S→SbS|a

5

c. Write CFG for the language consist of strings of palindrome with the input symbols a and b. Where the length of the string may be even or odd.

b. Obtain two leftmost & rightmost derivations for the string 'abababa' from the grammar

5

d. Show that the following grammar is ambiguous:

$$S \rightarrow S + S |S * S |S - S |a|b|c$$

5

- 6. a Remove all useless productions, unit productions and ∈ productions from the grammar
 - $S \to ABC \mid BaB \quad A \to aA \mid BaC \mid aaa \quad B \to aBa \mid a \mid D$

10

 $C \rightarrow CA | AC \qquad D \rightarrow \in$

b.	If L_1 and L_2 are CFL then P.T. they are closed under union and concatenation operations.				
c.	Convert the following CFG to CNF $S \rightarrow ABa$ $A \rightarrow aab$ $B \rightarrow AC$	4			
	UNIT - IV				
7 a.	a. Design a PDA to accept a string of balanced parenthesis and also show the string acceptation				
	for the string $W=[()]$.	12			
b.	Construct a PDA from the grammar:				
	$S \rightarrow aABB / aAA$				
	$A \rightarrow aBB / a$	8			
	B ightarrow bBB/A	O			
	$C \rightarrow a$				
	S is a Start symbol				
8 a.	Construct a PDA for the language				
	$L = \{WW^R \mid w \in (a+b)^*\}$ and show the string acceptance for the string abbbba.	12			
b.	Convert the following grammar into PDA				
	S→aSa/aa	0			
	$S \rightarrow bSb/bb$	8			
	And also show the string acceptance.				
	UNIT-V				
9 a.	Design Turing machine to accept the language having string of palindromes over {a, b}.	10			
b.	Design a Turing machine to accept the language consists of equal number of 0's and 1's	10			
10 a	. Explain ID, acceptance of language with respect to Turing machine with an example.	8			
b.	Explain the following:				
	i) Post correspondence problem	10			
	ii) Undecidable problems	12			
	iii) Multi track Turing machine.				

* * * *