

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester Information Science and Engineering
Semester End Examination; June - 2017
Analysis and Design of Algorithms
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I

1. a State and explain the properties of algorithm. 6
b. What are the important problem types? Explain any one in detail. 7
c. List the fundamental data structures. Explain stacks in detail. 7

2 a. What is Analysis framework? 12
b. Explain best case, worst case and average case analysis. 4
c. Give general plan for analyzing the efficiency of recursive algorithms. 4

UNIT - II
3 a. What is Brute force algorithmic strategy? 5
b. Give an algorithm for selection sort. 5
c. Write an algorithm for Brute force string matching. 5
d. Give strengths and weaknesses of Brute force algorithm. 5

4 a . Trace the quick sort algorithm to sort the list 'Q, U, E, S, T, I, O, N' in alphabetical order. 10
b. Explain the concept of Divide-and-Conquer. 5
c. Give an algorithm for merge sort. 5

UNIT - III
5 a . What is graph? Give applications of graph. 6
b. Compare DFS and BFS. 6
c. For the following graph, draw the DFS forest. Show tree edges and back edges clearly.

6 a. What are the three different methods by which transformations can be applied using Transform-and-Conquer method?
b. Construct a heap for the list $1,8,6,5,3,7,4$ by using the bottom up algorithm.
c. Construct an AVL tree by successive insertion 1, 2, 3, 4, 5, 6 .

UNIT - IV
7 a. What is the concept of Time-and-Space trade off? Explain different techniques that are useful in improving time efficiency.
b. For the input $30,20,56,75,31,19$ and hash function $h(k)=k \bmod 11$. Construct the open hash table.

8 a. Differentiate between Divide-and-Conquer and Dynamic Programming.
b. Give any two properties of Dynamic approach.
c. Apply Warshall's algorithm to find the transitive closure of the diagraph defined by the following adjacency matrix.

$$
\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

UNIT - V

9 a. Differentiate Greedy method with Dynamic programming.
b. Apply Kruskal's algorithm to find a minimum spanning tree of a given graph.

c. Apply Prim's algorithm for the following graph and obtain minimum spanning tree.
 bounds?
b. Distinguish between Backtracking and Branch-and-Bound techniques.
c. Obtain all possible solutions to 4 -Queen's problem. Establish the relationship between the two solutions.
d. Define NP-class problems.

