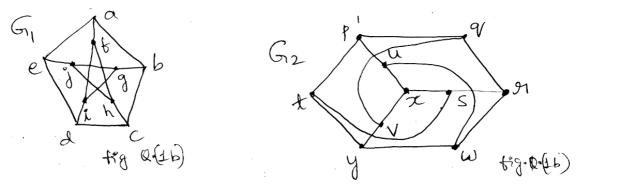
P15IS45							P	age I	Vo	. 1	
	U.S.N										
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Information Science and Engineering Semester End Examination; June - 2017 Graph Theory and Combinatories											
Time: 3	hrs					Ι	Iax	. Ma	rks.	: 100)

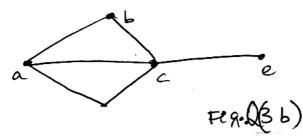

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Define :

(i) Connected Graph (ii) Spanning sub graph (iii) Bipartite graph; Give one example.

b. Define isomorphism. Show that the following graphs are isomorphic.



c. Write a short note on Konigsberg's bridge problem.

- ² a. Let G be a simple graph of order n. If the size of G is 56 and the size of \overline{G} is 80, what is n?
- b. Prove that in every graph, the number of vertices of odd degree is even.
- c. Define Hamiltonian cycle. How many edge disjoint Hamiltonian cycles exist in the complete graph with seven vertices? Also, draw the graph to show these Hamiltonian cycles of K₇.

UNIT - II

- 3 a. Prove that Kuratowskis second graph is non planar.
 - b. Find the geometric dual of the following graph Fig. Q 3(b).

c. Prove that a connected planar graph with 'n' vertices and 'm' edges has exactly m-n+2 regions.

7

6

7

7

6

7

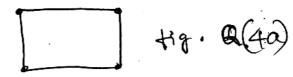
7

7

6

Page No... 2

7

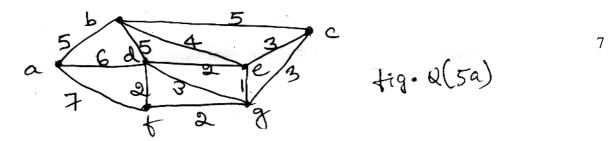

7

7

6

7

4 a. Define chromatic number and determine chromatic number and chromatic polynomial for the give given below.


b. Define :

(i) cut set(ii) edge connectivity(iii) vertex connectivity;6Give one example for each.

c. Write the steps to detect planarity in a graph with an example.

UNIT - III

5 a. Apply Kruskal's algorithm to find a minimal spanning tree for the weighted graph below :

- b. Obtain an optimal Prefix code for the message "FALL OF THE WALL".
- c. Define (i) Tree (ii) Rooted tree (iii) Balanced Tree. Give one example for each.
- 6 a. Find all the spanning trees of the given graph.

Fig Q(6a)

- b. Suppose that a tree 'T' has two vertices of degree 2, four vertices of degree 3 and three vertices of degree 4. Find the number of pendent vertices is T.
- c. Find the maximum flow between the two vertices A and D in the following graph.

P15IS45

UNIT - IV

7 a.	Determine the number of Positive integers in such that $1 \le n \le 100$ and 'n' is not divisible by	7							
	2, 3 or 5.								
b.	Define derangement. Find the number of derangement of 1, 2, 3, 4. List all the derangements.	6							
с.	A girl has sarees of 5 different colors; blue, green, red, white and yellow. On Monday, she								
	does not wear green; on Tuesdays blue or red on Wednesday blue or green, Thursday red or yellow; on Fridays, red. In how many color ways can she dress without repeating a color during a week?	7							
8 a.	Find a generating function for the following sequences :								
0	(i) 0^2 , 1^2 , 2^2 , 3^2 , 4^2 ,	7							
	(i) 0, 1, 2, 3, 1, (ii) 0, 2, 6, 12, 30, 30, 42	,							
b.									
0.	selected from MISISSIPPI.	6							
c.	Find the sequences generated by the following functions :								
	(i) $(3+x)^3$	7							
	(ii) $2x^2(1-x)^{-1}$.								
	UNIT - V								
9 a.	Solve the recurrence relation $a_n = n a_{n-1}$ for $n \ge 1$, given that $a_0 = 1$.	6							
b.	Find a recurrence relation and the initial condition for the sequence 2, 10, 50, 250	7							
	Hence find the general term of the sequence	7							
c.	The number of virus affected files in a system is 1000 (to start with and this increase 250%								
	every two hours. Use a recurrence relation to determine the number of virus affected files in	7							
	the system after one day.								
10 a.	Solve the recurrence relation :								
	$a_{n+1} - 6a_{n-1} + 9a_{n-2} = 0$ for $n \ge 2$	6							
	Given that $a_0 = 5, a_1 = 12$.								
b.	Find the generating function for the recurrence relation: $a_{n+1} - a_n = n^2$ $n \ge 0$ and $a_0 = 1$ and	7							
	hence solve it.	,							
c.	Find the recurrence relation and the initial condition for the sequence 0, 2, 6, 12, 20, 30,	7							
	42, Hence find the general term of the sequence.	7							