\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)

 Second Semester, B.E. - Semester End Examination; June - 2017

 Second Semester, B.E. - Semester End Examination; June - 2017
 Engineering Mathematics - II
 (Common to all Branches)

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a . Test for consistency and solve the following system of linear equations :
$2 x+y+4 z=12,4 x+11 y-z=33,8 x-3 y+2 z=20$.
b. Apply Gauss-Jordan method to solve the system of equations :
$2 x+5 y+7 z=52,2 x+3 y-z=0, x+y+z=9$.
c. Solve the following linear equations by L-U decomposition method :
$x+y+z=9,2 x-3 y+4 z=13,3 x+4 y+5 z=40$.
2 a. Find all the Eigen values and the Eigen vector corresponding to the largest Eigen value of the matrix

$$
A=\left[\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right] .
$$

b. Find the inverse of the matrix of using Cayley-Hamilton theorem $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$.
c. Find the modal matrix P which diagonalizes the matrix
$A=\left[\begin{array}{cc}2 & 6 \\ 0 & -1\end{array}\right]$ and hence find the diagonal matrix D.

UNIT - II

3 a. Solve: $\left(D^{4}-2 D^{3}+5 D^{2}-8 D+4\right) y=0$.
b. Solve: $y^{\prime \prime}+2 y^{\prime}+y=2 x+x^{2}$.
c. Solve: $\left(D^{2}-2 D+1\right) y=x \cos x$.

4 a. Solve: $y^{\prime \prime}-2 y^{\prime}+2 y=e^{x} \tan x$, using the method of variation of parameter.
b. Solve: $y^{\prime \prime}+4 y=x^{2}+e^{-x}$, by the method of undetermined coefficients.
c. Solve: $(3 x+2)^{2} y^{\prime \prime}+3(3 x+2) y^{\prime}-36 y=3 x^{2}+4 x+1$.

UNIT - III

5 a. Find the Laplace transform of : (i) $t e^{-2 t} \cos 2 t \quad$ (ii) $\frac{e^{-a t}-e^{-b t}}{t}$.
b. Derive a unit step function. Using this, find the Laplace transform of,

$$
f(t)=\left\{\begin{array}{lc}
t^{2}, & 0<t<2 \tag{7}\\
4 t, & t>2
\end{array}\right.
$$

c. A periodic function $f(t)$ of period $2 a$ is defined by,
$f(t)=\left\{\begin{array}{cc}a & \text { for } 0 \leq t<a \\ -a & \text { for } a \leq t \leq 2 a\end{array}\right.$
Show that $L\{f(t)\}=\frac{a}{s} \tanh \left(\frac{a s}{2}\right)$.

6 a. Find the Inverse Laplace transform of : $\frac{3 s+1}{(s-1)\left(s^{2}+1\right)}$.
b. Solve $L^{-1}\left\{\frac{S^{2}}{\left(S^{2}+a^{2}\right)\left(S^{2}+b^{2}\right)}\right\}$, by using convolution theorem.
c. Solve by using Laplace transform $\frac{d^{2} y}{d t^{2}}-\frac{3 d y}{d t}+2 y=4 e^{2 t}$, given that $y(0)=-3, \quad y^{\prime}(0)=5$.

UNIT - IV

7 a. Find the percentage error in the area of an ellipse, when an error of $+1 \%$ is made in measuring the major and minor axis.
b. Expand $\tan ^{-1}(y / x)$ about the point $(1,1)$ using Taylor's theorem upto the second degree terms.
c. Find the extreme values of the function $x^{3} y^{2}(1-x-y)$.

8 a. Evaluate $\int_{c} \vec{F} \cdot \overrightarrow{d r}$ where $\vec{F}=x y i+\left(x^{2}+y^{2}\right) j$ along
(i) The path of straight line from $(0,0)$ to $(1,0)$ and then to $(1,1)$
(ii) The straight line joining the origin and $(1,2)$.
b. Verify Green's theorem for $\oint_{c}\left(x y+y^{2}\right) d x+x^{2} d y$ where C is the closed curve of the region bounded by $y=x$ and $y=x^{2}$.
c. Evaluate $\int_{c} x y d x+x y^{2} d y$ by Stoke's theorem where C is the square in the $x-y$ plane with vertices $(1,0),(-1,0),(0,1),(0,-1)$.

UNIT - V

9 a. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{d z d y d x}{(1+x+y+z)^{3}}$
b. Evaluate $\iint_{R} x^{2} y d x d y$ where R is the region bounded by the lines $y=x, x+y=2$ and $y=0$.
c. Change the order of integration and hence evaluate $\int_{0}^{4 a} \int_{x^{2} / 4 a}^{2 \sqrt{a x}} x y d y d x$.

10a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$, by changing to polar coordinates.
b. Find the area of the ellipse by double integration.
c. Show that : $\quad \int_{0}^{\pi / 2} \frac{d \theta}{\sqrt{\sin \theta}} \times \int_{0}^{\pi / 2} \sqrt{\sin \theta} d \theta=\pi$.

