	U.S.N					\square		7
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, B.E Semester End Examination; June - 2017 Engineering Mathematics - II								
(Common to all Branches) Time: 3 hrs Max. Marks: 100								
Note: Answer FIVE full questions, selecting ONE full question from each unit.								
11010.71	UNIT - I	511 51 0111 0	uch i					
	for consistency and solve the following system of $\lim_{y \to 4z} y = 12, \ 4x + 11y - z = 33, \ 8x - 3y + 2z = 20.$	ear equa	tions	:				6
b. Appl	y Gauss-Jordan method to solve the system of equation	ons :						7
	5y+7z=52, $2x+3y-z=0$, $x+y+z=9$.							/
	the following linear equations by L-U decomposition y+z=9, $2x-3y+4z=13$, $3x+4y+5z=40$.	n methoc	1:					7
2 a. Find matr	all the Eigen values and the Eigen vector correspondix	ding to t	he lar	gest	t Eige	n valı	ie of th	ie
A =	$\begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}.$							6
b. Find	the inverse of the matrix of using Cayley-Hamilton t	heorem .	$A = \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix}$	2 1 0 1 1 1	$\begin{bmatrix} 1\\0\\2 \end{bmatrix}.$			7
	the modal matrix P which diagonalizes the matrix							
A =	$\begin{bmatrix} 2 & 6 \\ 0 & -1 \end{bmatrix}$ and hence find the diagonal matrix <i>D</i> .							7
UNIT - II								
3 a. Solv	e: $(D^4 - 2D^3 + 5D^2 - 8D + 4)y = 0.$							6
b. Solve	e: $y'' + 2y' + y = 2x + x^2$.							7
c. Solve	$e: \left(D^2 - 2D + 1\right) y = x \cos x.$							7
4 a. Solv	e: $y''-2y'+2y = e^x \tan x$, using the method of variati	on of par	ramet	er.				6
	e: $y''+4y = x^2 + e^{-x}$, by the method of undetermined c							7
c. Solv	e: $(3x+2)^2 y''+3(3x+2) y'-36y = 3x^2 + 4x + 1.$							7
UNIT - III								
5 a. Find	the Laplace transform of : (i) $te^{-2t} \cos 2t$ (ii) $\frac{e^{-2t}}{2t} \cos 2t$	$\frac{e^{at}-e^{-bt}}{t}.$						6

b. Derive a unit step function. Using this, find the Laplace transform of, (2)

$$f(t) = \begin{cases} t^2, & 0 < t < 2\\ 4t, & t > 2 \end{cases}$$
Contd...2

P15MA21

Page No... 2

6

7

6

7

6

7

7

6

7

6

7

c. A periodic function f(t) of period 2a is defined by,

$$f(t) = \begin{cases} a & \text{for } 0 \le t < a \\ -a & \text{for } a \le t \le 2a \end{cases}$$
 Show that $L\{f(t)\} = \frac{a}{s} \tanh\left(\frac{as}{2}\right).$ 7

6 a. Find the Inverse Laplace transform of : $\frac{3s+1}{(s-1)(s^2+1)}$.

b. Solve
$$L^{-1}\left\{\frac{S^2}{\left(S^2+a^2\right)\left(S^2+b^2\right)}\right\}$$
, by using convolution theorem. 7

c. Solve by using Laplace transform $\frac{d^2y}{dt^2} - \frac{3dy}{dt} + 2y = 4e^{2t}$, given that y(0) = -3, y'(0) = 5. UNIT - IV

- 7 a. Find the percentage error in the area of an ellipse, when an error of +1% is made in measuring the major and minor axis.
 - b. Expand $\tan^{-1}\left(\frac{y}{x}\right)$ about the point (1, 1) using Taylor's theorem upto the second degree terms. 7
- c. Find the extreme values of the function $x^3y^2(1-x-y)$.
- 8 a. Evaluate $\int_{c} \vec{F} \cdot d\vec{r}$ where $\vec{F} = x y i + (x^2 + y^2) j$ along
 - (i) The path of straight line from (0, 0) to (1, 0) and then to (1, 1)
 - (ii) The straight line joining the origin and (1, 2).
 - b. Verify Green's theorem for $\oint_c (xy + y^2) dx + x^2 dy$ where *C* is the closed curve of the region

bounded by y = x and $y = x^2$.

c. Evaluate $\int_{c} xy \, dx + xy^2 \, dy$ by Stoke's theorem where *C* is the square in the *x*-*y* plane with vertices (1, 0), (-1, 0), (0, 1), (0, -1).

UNIT - V

9 a. Evaluate $\int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} \frac{dz \, dy \, dx}{\left(1+x+y+z\right)^{3}}$

b. Evaluate $\iint_{R} x^2 y \, dx \, dy$ where *R* is the region bounded by the lines y = x, x + y = 2 and y = 0. 7

- c. Change the order of integration and hence evaluate $\int_{0}^{4a} \int_{x^2/a_a}^{2\sqrt{ax}} xy \, dy \, dx.$
- 10a. Evaluate $\int_{0}^{\infty} \int_{0}^{\infty} e^{-(x^2+y^2)} dx dy$, by changing to polar coordinates.
 - b. Find the area of the ellipse by double integration.

c. Show that :
$$\int_{0}^{\pi/2} \frac{d\theta}{\sqrt{\sin\theta}} \times \int_{0}^{\pi/2} \sqrt{\sin\theta} d\theta = \pi.$$
 7

* * * *