U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, Master of Computer Applications (MCA) Semester End Examination; June - 2017 Data Structures using C

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a.	Define data structures. Write C function to concatenate two strings without using built-in	6				
	functions.	U				
b.	Write C program to store n employee's information (name of employee, employee number,					
	department name and salary). Display the details of employees working for a particular	8				
	department. (Use structures and functions).					
c.	Assume each element of the array is stored in row major order occupies two units of storage.					
	If 'a' is declared by each of the following and the address of the first element of 'a' is 100,					
	find the address of the indicated array element:	6				
	(i) int a[100]; address of a[10] (ii) int a [10] [20]; address of a [0][0]					
	(iii) int a [10] [10]; address of a [3] [5] (iv) int a [10]; address of a[9].					
2 a.	What is abstract data type? Give ADT for rational numbers with following operations:	10				
	making rational, add_rational, multiply_rational and equality_rational.	10				
b.	Write C program to store student's information (name, register number, three subject					
	marks). Display student's details who have scored the highest score in the class (use	10				
	structures and functions).					
	UNIT - II					
3 a.	a. Write a recursive C program for binary search.					
b.	Write a C function for evaluation of postfix expression. Evaluate the following postfix	10				
	expression using algorithm: 62+2*697-/	10				
c.	What is Tower of Hanoi problem? Trace Tower of Hanoi for three disks.	5				
4 a.	Convert the following infix expression to postfix and prefix form :	6				
	(i) $(A+B) * (C-D)$ (ii) $A-B/(C*D\$E)$ (iii) $(9-8)\$ (7/5\$4)$.	U				
b.	Given an empty stack of size three, show the status of stack for the following operations:					
	(i) Pop (ii) Push 40, 30, 66, 55 (iii) Pop	5				
	(iv) Push 100, 200 (v) Pop.					
c.	Write C modules for Push, Pop and Display operations of stack.	9				

P15MCA21 Page No... 2

UNIT - III

5 a.	What is the advantage of circular queue over queues? Write C modules to implement	10		
	operations on circular queue.	10		
b.	Write C modules for insertion, deletion and display operations for queue.	10		
6 a.	Write C modules for the following:			
	(i) Search key in a Singly Linked List	10		
	(ii) Create Circular Doubly Linked List.			
b.	Write C functions for the following:			
	(i) Display contents of Circular Singly Linked List	10		
	(ii) Delete a node in a Singly Linked List based on key.			
	UNIT - IV			
7 a.	Write a C program to search a number using linear search method.	9		
b.	Explain Indexed sequential search.	6		
c.	Write C function for searching using BST.	5		
8 a.	Define Binary search tree. Construct BST for the following data and carry out inorder,			
	preorder and postorder traversals. Show the array memory representation of constructed BST.	10		
	Data: 14, 15, 4, 9, 7, 18, 3, -5, 16, 42.			
b.	What are hashing and hash collision? Explain two methods for resolving hash clashes.	6		
c.	Define strictly binary tree and complete binary tree.	4		
	UNIT - V			
9 a.	Write C program for sorting N strings using Insertion sort. Trace insertion sort for the			
	following strings:	14		
	"Zoya", "Bhargavi", "Yasmin", "Dipak", "Asha", "Prashant", "Deepika", "Ashoka".			
b.	Trace Radix sort for the following data:	6		
	251, 575, 482, 376, 121, 925, 869, 330.			
10 a.	Write C program to sort N numbers using Quick sort.	10		
b.	Explain the working of shell sort. Trace shell sort for the following data: 25, 57, 48, 37, 12, 92, 86, 33.	10		