U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester, M. Tech - Mechanical Engineering (MCIM)

Semester End Examination; June - 2017 Industrial Robotics

Time: 3 hrs Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

NO	e: Answer FIVL juit quest		U NIT - I						
1 a.	Discuss advantages and a	pplications of rob	ots in industry.	10					
b.	Define the terms as applicable to robots,								
	(i) Accuracy	(ii) Precision	(iii) Repeatability	10					
	(iv) Spatial resolution	(v) Complianc	e.						
2 a.	Explain the various confi	gurations of robot	s.	10					
b.	What is trajectory design	consideration? Ex	aplain briefly.	10					
		τ	JNIT - II						
3 a.	a. Explain the types of drive systems generally used in robot system.								
b.	c. Explain the principle of operation of stepper motors used in robot.								
4 a.	Discuss the control loop using voltage amplifier method.								
b.	List the types of controlle	ers used in a robot	joint and explain any two.	10					
		U	NIT - III						
5 a.	Using D.H. convention, obtain the displacement matrices for a typical cylindrical arm robot.								
b.	Explain the role of homogeneous transformation matrix in robot kinematic problems.								
6 a.	a. Define direct and indirect kinematics and explain how DH convention representation method								
	is useful in this area?								
b.	b. Using relative transformations obtain the composite transformations matrix for 3D relation								
	about any orbitary line. Indicate the transformation with neat sketch.								
		\mathbf{U}	NIT - IV						
7 a.	Discuss the key issues of	locomotion.		10					
b.	Determine the giants of a biped and illustrate them.								
8 a.	With a neat sketch, explain two types of leg configuration.								
b.	Briefly discuss robot kinematic constraints with examples.								
		τ	JNIT - V						
9 a.	Discuss the degree of mobility and steerability with respect to mobile robot.								
b.	Explain path and trajectory consideration with an example.								
10.	Short notes on: i) Obsta	cle avoidance	ii) Navigation architectures.	20					