E			
Har of	P.E.S. College of Engineering, Mandya - 571 401		
	(An Autonomous Institution affiliated to VTU, Belagavi)		
	Second Semester, M. Tech - Computer Science and Engineering (MCSE)		
	Semester End Examination; June - 2017 Real Time Operating System		
Ta	ime: 3 hrs Max. Marks: 100		
No	ote: Answer FIVE full questions, selecting ONE full question from each unit.		
	UNIT - I		
1 a.	Discuss Precedence constraints and data dependency.		
b.	Explain clock driven and priority driven approaches to scheduling real time systems.		
2 a.	With reference to Air traffic/flight discuss High level controls.		
b.	With examples, explain hard real time systems and discuss why hard timing constraints are imposed?		
	UNIT - II		
3 a.	Explain the general structure of cyclic schedules.		
b.	Distinguish between Fixed priority and Dynamic priority algorithms.		
4 a.	Discuss scheduling of sporadic jobs.		
b.	Explain how one can deduce how large the total utilization of a system has to be in order fo the system to the securely schedulable?		
	UNIT - III		
5 a.	Write a note on Non-preemptive critical sections.		
b.	Explain the Bandwidth preserving servers that are designed to improve over a deferrable server.		
5 a.	Differentiate between Priority-Inductance and Priority ceiling protocols.		
b.	Discuss the following :		
	i) Background and Interrupt driven execution versus Slack stealing		
	ii) Polled executions versus Bandwidth preserving services.		
7			
7 a.	Demonstrate hardware interfacing from software/system engineering perspective for real time systems.		
b.	Discuss Architectural enhancements that can improve the performance of Real time systems.		
8.	Explain : i) FPGAii) Non-Von Neumann Architectures.		
	UNIT - V		
	With a neat figure illustrate the Role of the Kernel in operating systems		
	Discuss the different types of dynamic allocation.		
	. Illustrate the usage of Semaphores as a methodology for protecting critical regions.		
b.	Explain the Task control Block model and main memory issue associated with it.		

b. Explain the Task control Block model and main memory issue associated with it.