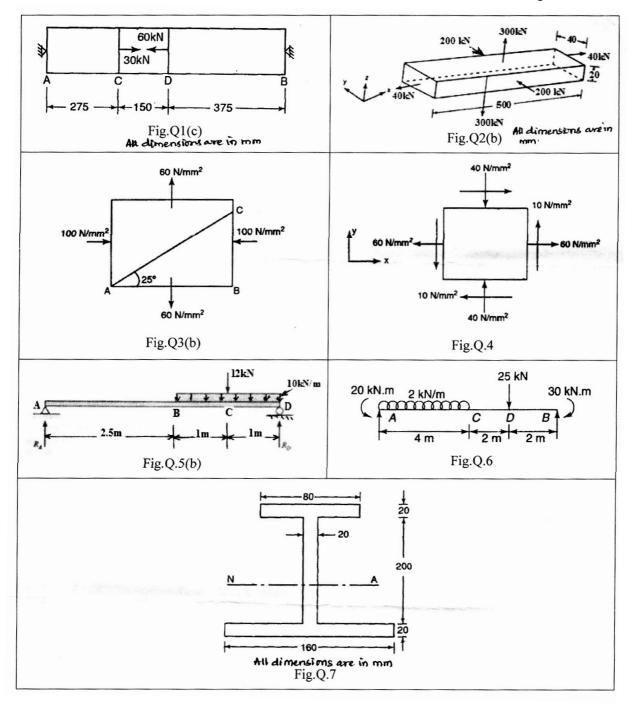
| P15                                                                                                                                                                     | 5ME44 Page No 1                                                                            |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----|
| Congeneration of the second                                                                                                                                             |                                                                                            |    |
| The second second                                                                                                                                                       | P.E.S. College of Engineering, Mandya - 571 401                                            |    |
| (An Autonomous Institution affiliated to VTU, Belagavi)                                                                                                                 |                                                                                            |    |
| Fourth Semester, B.E Mechanical Engineering<br>Semester End Examination; June - 2017                                                                                    |                                                                                            |    |
|                                                                                                                                                                         | Mechanics of Materials                                                                     |    |
| Tir                                                                                                                                                                     | ne: 3 hrs Max. Marks: 100                                                                  |    |
| <i>Note</i> : <i>i</i> ) Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit.<br><i>ii</i> ) Any missing data may be assumed suitably. |                                                                                            |    |
| UNIT - I                                                                                                                                                                |                                                                                            |    |
| 1 a.                                                                                                                                                                    | Explain Saint Versant's principle.                                                         | 4  |
| b.                                                                                                                                                                      |                                                                                            | 4  |
| c.                                                                                                                                                                      |                                                                                            |    |
|                                                                                                                                                                         | modulus of the material is 200 GPa, determine the reactions at the ends. If the dia of the | 12 |
|                                                                                                                                                                         | bar is 25 mm. Determine the stress in each portion of the bar.                             |    |
| 2 a.                                                                                                                                                                    | Derive an expression relating modulus of elasticity and modulus of rigidity.               | 10 |
| b.                                                                                                                                                                      | Determine the change in volume in the rectangular bar shown in Fig. Q2(b), if              | 10 |
|                                                                                                                                                                         | $E = 2x10^5 \text{ N/mm}^2 \text{ and } \mu = 0.3.$                                        | 10 |
| UNIT - II                                                                                                                                                               |                                                                                            |    |
| 3 a.                                                                                                                                                                    | Derive expression for normal and tangential stresses acting on any plane in a general      | 12 |
|                                                                                                                                                                         | biaxial stress element.                                                                    | 12 |
| b.                                                                                                                                                                      | Determine the resultant stress acting on plane AC shown in Fig. Q3(b).                     | 8  |
| 4.                                                                                                                                                                      | Determine principal stresses, maximum shear stress and their planes analytically and using | 20 |
|                                                                                                                                                                         | Mohr's Circle, for the element shown in Fig. Q4.                                           | 20 |
|                                                                                                                                                                         | UNIT - III                                                                                 |    |
| 5 a.                                                                                                                                                                    | Derive the expression relating load intensity shear force and bending moment.              | 6  |
| b.                                                                                                                                                                      | The simply supported beam AD is subjected to loading as shown in Fig. Q5(b). Draw SFD      |    |
|                                                                                                                                                                         | and BMD for the beam. Also determine the location and magnitude of maximum bending         | 14 |
|                                                                                                                                                                         | moment.                                                                                    |    |
| 6.                                                                                                                                                                      | Draw SFD and BMD for the beam shown in Fig. Q6. Determine maximum bending                  | 20 |
|                                                                                                                                                                         | moment and locate points of contra flexure.                                                |    |
|                                                                                                                                                                         |                                                                                            |    |
| 7.                                                                                                                                                                      | A simply supported beam of I-Section as shown in Fig. Q7 is subjected to a point load of   | 20 |
|                                                                                                                                                                         | 80 kN at the midpoint of the beam. The length of the beam is 8 m. Determine the values of  | 20 |
|                                                                                                                                                                         | maximum bending stress and shear stresses in the beam.                                     |    |

## P15ME44

## *Page No... 2*


- 8. A simply supported beam of 6 m span is subjected to a concentrated load of 18 kN at 4 m from left support. Calculate;
  - (i) Position and value of maximum deflection
  - (ii) Slope at mid span
  - (iii) Deflection at the load point.
  - Assume E = 200 GPa;  $I = 15 \times 10^{6} \text{mm}^{4}$ .

## UNIT - V

- 9 a. Derive torsion equation relating torsional shear stress, regidity modulus and applied torque. 10
  - b. Derive Euler's equation for buckling load of a column hinged at both ends.
- 10 a. A hollow shaft transmits 200 kW of power at 150 rpm. The total angle of twist in a length of 5m is 3°. Find the inner and outer diameters of the shaft of the permissible shear stress is 60 MPa and modulus of rigidity is 80 GPa.
  - b. A hollow cylinder 4.5m long, with outside diameter of 200 mm and thickness 20 mm is fixed at both ends. Calculate the safe load by Rankine's formula using a factor of safety of 2.5. Also find the ratio of Euler's to Rankine's loads. Take  $E = 1 \times 10^5$  N/mm<sup>2</sup>, Rankine's constant = 1/6000 and crushing strength of 550 N/mm<sup>2</sup>.

20

10



\* \* \* \*