	<i>U.S.N</i>		
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E Mechanical Engineering Semester End Examination; June - 2017 Heat and Mass Transfer			
	me: 3 hrs Max. Marks: 100 te: Answer FIVE full questions, selecting ONE full question from each unit.		
110	UNIT - I		
1 a.	Explain the three types of boundary conditions.	6	
b.	Derive a general heat conduction equation in rectangular coordinate system.	8	
c.	A plain wall of thickness 'L' and constant thermal properties is initially at a uniform		
	temperature 'T _i '. Suddenly the surface at $x = L$ is subjected to heating by hot gases at T _∞ with	6	
	heat transfer coefficient 'h'. The other surface at $x = 0$ is kept insulated. Write the	0	
	mathematical formulation for 1-D, transient temperatures distribution in the wall.		
2 a.	Derive an expression for critical thickness of insulation of a cylinder.	6	
b.	Define efficiency and effectiveness of fins.	4	
c.	An exterior wall of a house may be approximated by a 0.1 m layer of common brick		
	$(k = 0.7 \text{ W/m}^{\circ}\text{C})$ followed by a 0.04 m layer of gupsum plaster (k = 0.48 W/m $^{\circ}\text{C}$), what		
	thickness of glass wool insulation (k=0.065 W/m°C) should be added to reduce the heat loss		
	through the wall by 80 percent?	10	
	UNIT – II		
3 a.	Derive an expression for temperature distribution through a plane wall with uniform heat		
	generation when both the surface have the same temperature and also find the maximum	10	
	temperatures.		
b.	An electric current of 34,000 A flows along a flat steel plate 12.5 mm thick and 100 mm wide.		
	The temp at one surface is 82° C and other is 95° C. Find the temp distribution and the value	10	
	and position of maximum temperature. Take $\rho = 12x10^{-8} \Omega/m$ and $K = 52.4 W/m^{\circ}K$.		
4 a.	Derive an expression of temperatures distribution in lumped parameter analysis.	10	
b.	Steel ball bearing (K = 50 W/m°K, $\propto = 1.3 \times 10^{-5} \text{ m}^2/\text{s}$) having dia of 40 mm, initially at a		
	temperature of 650° C and suddenly quenched in a oil bath at 55° C. If the heat transfers		
	coefficient is $300 \text{ W/m}^2\text{K}$.	10	
	Determine; (i) Time taken for bearing to reach the temp at 200°C	10	
	(ii) Instantaneous heat transfer when bearing at 200°C		

(iii) Total heat transfer during this time period.

Contd 2...

P13ME63

Page No... 2

UNIT - III

5 a.	With reference to fluid flow over a flat plate, discuss the concept of velocity and thermal	10
	boundary layer, with necessary sketches.	10
b.	A vertical pipe 15 cm outer dia, 1m long, has a surface tempt of 90°C.	
	(i) If the surrounding air is at 30° C. What is the rate of heat loss by free convection per meter	10
	length of pipe?	10
	(ii) If the pipe is inclined to vertical at an able of 30° , what is the heat loss/meter length?	
6 a.	With the help of dimensional analysis derive relation for the Reynolds number, Prandtal	10
	number and Nusselt number.	10
b.	Air at -20°C, 30 m/s, flows over a sphere of dia 25 mm, which is maintained at 80°C.	10
	Calculate the heat loss from sphere.	10
	UNIT - IV	
7 a.	Explain briefly the following laws:	
	(i) Stefan Boltzmann law (ii) Kirchhoff's law (iii) Planck's law	10
	(iv) Wien's displacement law (v) Lambert's Cosine law.	
b.	Two large parallel plates are at 1000° K and 800° K. Determine the heat exchange per unit	
	area, when (i) the surface are black, (ii) the hot surface has an emissivity of 0.9 and cold	10
	surface has a emissivity of 0.6, iii) A large plate of emissivity of 0.1 is inserted between them.	
8 a.	Explain the concept of black body.	4
b.	Prove that Emissive power of a black body in a hemispherical enclosure is $\boldsymbol{\pi}$ times the	8
	intensity of radiation.	C
c.	The temperature of a black surface 0.2 m ² in area is 540°C. Calculate	
	(i) The total rate of energy emission (ii) The intensity of normal radiation	8
	(iii) The wavelength of maximum monochromatic emissive power.	
	$\mathbf{UNIT} - \mathbf{V}$	
	Derive an expression for LMTD of parallel flow heat exchanger.	10
b.	Oil at 100° C (C _p = 3.6 kJ/kgK) flows at a rate of 30,000 kg/hr and enters a parallel flow heat	
	exchanger cooling water ($C_p = 4.2 \text{ kJ/kgK}$) enters at 10° C at t4 rate of 50,000 kg/hr. The heat	10
	transfer area is 10 m ² and u = 1000 W/m ² K. Calculate outlet temp of oil and water.	
10 a.	With a neat sketch, explain the regimes of pool boiling.	8
b.	State and explain Fick's law of diffusion.	4
c.	Dry saturated steam at atmospheric pressure condenses on a vertical tube of dia 5 cm and	
	length 1.5 m. If the surface is maintained at 80°C, determine the heat transfer rate and the	8
	mass of steam condensed per hour.	