U.S.N					

Page No... 1

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belgaum)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec - 2016/Jan - 2017 Logic Design

Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I 1 a. Define Universal gates. Implement Basic gates using any one Universal gate. 7 b. List and explain TTL characteristics. 6 Simplify the following Boolean function using K-map and draw the equivalent logic 7 circuit, $f(A, B, C, D) = \Pi M(0, 1, 2, 3, 4, 6, 10, 11, 13).$ 2 a. Describe CMOS characteristics. 6 b. Get the simplified expression of, 6 $Y = F(P, Q, R, S) = \Sigma m(0, 4, 8, 10, 11, 12, 14, 15)$ using Quine Mc-Clusky method. Design BCD to excess-3 code converter. 8 **UNIT - II** Design Full adder and Full subtractor using suitable multiplexer. 10 3 a. b. Design 2 bit Fast adder and justify you design. 6 Write a VHDL code for 1 bit magnitude comparator. 4 4 a. Design programmable logic array for the following Boolean functions: $F_1(A, B, C) = \Sigma m(0, 3, 5, 7)$ 6 $F_2(A, B, C) = \Sigma m (0, 4, 6, 7)$ $F_3(A, B, C) = \Sigma m(0, 4, 6).$ b. Explain the working of 8 bit binary adder subtractor circuit. 8 c. Implement the following Boolean function using 8:1 MUX, 6 $F(W, X, Y, Z) = \Sigma m(0, 3, 4, 6, 10, 14, 15) + d(2, 5, 8, 11).$ **UNIT - III** Differentiate between positive edge triggered and negative edge triggered clock pulses. 5 a. 4 Convert JK Flip-Flop to SR Flip-Flop. 8 c. List the types of registers and explain with neat logic diagram. 8 Describe Master-Slave JK Flip-Flop. 8 6 a. b. Convert D Flip-Flop to SR Flip-Flop. 8 List the Applications of shift registers and explain any two. 4

UNIT - IV

7 a.	Design 2 bit synchronous down counter using JK Flip-Flop.			
b.	Design a sequential circuit using Moore model for a given sequential input of '011'.			
c.	Differentiate between synchronous counter and asynchronous counter.	2		
8 a.	State the rules for state assignment.	10		
b.	Design synchronous Mod-5 counter using clocked JK Flip-Flop.	10		
	UNIT - V			
9 a.	Explain D/A accuracy and resolution.	6		
b.	Describe single Ramp-A/D converter.	10		
c.	Find the binary equivalent weight of each bit in a 4 bit system.	4		
10 a.	Explain successive approximation weight of each bit in a 4 bit system.	10		
b.	Explain 2 bit simultaneous A/D converter.	10		